
NBSIR 81-2466

Expert Computer Systems, and
Their Applicability to Automated
Manufacturing

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Industrial Systems Division

Metrology Building, Room A127
Washington, DC 20234

N

February 1982

Issued October 1982

\

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

/

WATIONAt, BUREAU
Pr STANDARDS

UfiRABT

NOV 2 1982

NBSIR 81-2466

EXPERT COMPUTER SYSTEMS, AND
THEIR APPLICABILITY TO AUTOMATED
MANUFACTURING

Dr. Dana S. Nau*

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Industrial Systems Division

Metrology Building, Room A127
Washington, DC 20234

February 1 982

Issued October 1982

’Faculty Appointee from the University of Maryland.

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

1

EXPERT COMPUTER SYSTEMS, AND THEIR APPLICABILITY

TO AUTOMATED MANUFACTURING

by

Dana S. Nau

Computer Science Department
University of Maryland
College Park, MD 207^2

ABSTRACT

This paper contain
techniques used in expert
an automated process plan
Manufacturing Research Fa
Standards (NBS).

The tutorial portion
3, and 4. Sections 2 a

knowledge representation tec
which these techniques hav
which achieve a high level
normally require significant

Section 5 contains a

for process planning in
Facility (AMRF) at NBS, and
accomplish these activities
for how an expert system cou
planning activity called pro

s two mai n par ts

:

a tutorial on
sys terns

,
an d some rec ommendations for

nin g syst em for the Automated
cil ity at th e Nat i onal Bureau of

of the pap er con sist s of Sections 2,
nd 3 disc uss AI problem solving and
hni ques . S ect ion 4 d escr i bes ways in
e b een used to bu ild computer systems
of pe rfor man ce on problems which
hu man expe rti se for their solution

.

su mmar y of th e acti vit ie s required
the Au toma ted Ma nuf a ctur i ng Research
rec ommendat ion s for how to how to
• Sect ion 6 c on t ains recommendations
Id be d esigned to per form a process
ces s se lect ion •

2

TABLE OF CONTENTS

Page

Abstract 1

1 . Introduction 3

2. Problem Solving 5

2.1. State-Space Search 5
2.2. Problem Reduction 9

2.3. Examples 12

3. Knowledge Representation 19
3.1. Declarative knowledge 19

3.2. Procedural Knowledge 2M

4. Expert Systems 28
M.1. MYCIN 29
4.2. CASNET 34
4.3. Hearsay-II 40
4.4. DENDRAL and MDX 44

5. Process Planning Requirements for the AMRF 4?
5.1. Process Planning Activities 47
5.2. Geometric Modelling Requirements 58

6. Recommendations for Process Selection 62
6.1. Existing Systems 62
6.2. The Recommended System 64
6.3. Scenario for an Automated Process Selection System . 67

Acknowledgements 78

References 79

Figures 83

1

EXPERT COMPUTER SYSTEMS, AND THEIR APPLICABILITY

TO AUTOMATED MANUFACTURING

by

Dana S. Nau

Computer Science Department
University of Maryland
College Park, MD 20742

ABSTRACT

This paper contains two main parts: a tutorial on
techniques used in expert systems, and some recommendations for
an automated process planning system for the Automated
Manufacturing Research Facility at the National Bureau of
Standards (NBS).

The tutorial portion of the paper consists of Sections 2,

3, and 4. Sections 2 and 3 discuss AI problem solving and
knowledge representation techniques. Section 4 describes ways in
which these techniques have been used to build computer systems
which achieve a high level of performance on problems which
normally require significant human expertise for their solution.

Section 5 contains a summary of the activities required
for process planning in the Automated Manufacturing Research
Facility (AMRF) at NBS, and recommendations for how to how to
accomplish these activities. Section 6 contains recommendations
for how an expert system could be designed to perform a process
planning activity called process selection.

2

TABLE OF CONTENTS

Page

Abstract 1

1 . Introduction 3

2. Problem Solving 5

2.1. State-Space Search 5
2.2. Problem Reduction 9

2.3. Examples 12

3. Knowledge Representation 19
3.1. Declarative knowledge 19

3.2. Procedural Knowledge 24

4. Expert Systems 28
4.1. MYCIN 29
4.2. CASNET 34
4.3. Hearsay-II 40
4.4. DENDRAL and MDX 44

5. Process Planning Requirements for the AMRF 47
5.1. Process Planning Activities 47
5.2. Geometric Modelling Requirements 58

6. Recommendations for Process Selection 62
6.1. Existing Systems 62
6.2. The Recommended System 64

6.3. Scenario for an Automated Process Selection System . 67

Acknowledgements 78

References 79

Figures 83

3

1. INTRODUCTION

The field of Artificial Intelligence (AI) is in an

exciting position at present. It is only recently that AI has

advanced to the point that AI projects are accomplishing useful

practical results. Most of these results involve the design and

utilization of expert systems , problem-solving computer systems

which can reach a level of performance comparable to that of an

expert human being in some specialized problem domain.

All expert systems known to this author are

knowledge -based systems : their high level of performance is based

on the use not only of declarative knowledge about the problem

domain (i.e., the data to be manipulated), but also of knowledge

about problem solving that is tailored specifically to the

problem domain. An expert system typically consists of (1) a

"knowledge base" of declarative knowledge, (2) an encoding of

problem-specific problem solving knowledge, (3) a control

strategy for manipulating the problem solving knowledge and the

knowledge base, and (4) interfaces which allow a human user to

conult the system, get it to solve problems, and explain its

solutions

.

Sections 2, 3, and 4 comprise a tutorial on techniques

used in expert systems. Since expert systems are a combination

of AI problem solving techniques and AI knowledge representation

techniques, the tutorial includes expositions of these areas as

well. Section 2 discusses problem solving techniques. Section 3

discusses knowledge representation, and Section 4 gives several

examples of the workings of expert systems.

Section 1 4

Sections 5 and 6 are a discussion of process planning in

the Automated Manufacturing Research Facility (AMRF) at NBS, and

the possible applicability of expert system techniques to this

task. Section 5 discusses the activities necessary for process

planning, and makes suggestions for how these activities might be

accomplished. Section 6 focuses specifically on a process

planning activity called process selection, and describes how an

interactive expert system might be designed for this task.

Section 4, as an exposition of various expert systems

techniques, has somewhat the flavor of a survey of current expert

systems. However, this is mainly for tutorial purposes:

considered as a survey, the section is not at all complete. I

apologise in advance to those researchers whose projects and

ideas have been omitted from this section, either inadvertently

or due to space and time constraints.

5

2. PROBLEM SOLVING

2 ,^, State -Space Search

Many problems in artificial intelligence are solved by

searching through a space of "states of the world" to find a path

from some initial state (the state of the world before any work

has been done to solve the problem) to any of one or more goal

states (states in which the problem has been solved). This

search is done by applying operators (which depend on the

particular problem domain) to transform states into other states.

In a forward search, one starts with the initial state

and applies operators to try to find a solution path to a goal

state. In a backward search, one starts with the goal state (or

states), and applies the inverses of the operators to try to find

a solution path. The state space corresponds to a directed graph

in which the states are the nodes of the graph, and in which

there is an arc from some node A to another node B if there is an

operator which transforms state A into state B.

The possible objectives of searching through the state

space might be (1) to find any goal, (2) to find the shortest

path to a goal, (3) to find the path of least cost or highest

cost, according to some cost criterion, or possibly other

objectives

.

The organization of state-space search procedures is

frequently as shown below:

Section 2 6

CONTROL STRUCTURE: knowledge about how to
do what can be done.

Keeps track of states.
Decides which operators to apply.
Decides whether to backtrack.

OPERATORS: knowledge about what can be done.
They govern what the search space looks like.

STATES: knowledge about what has been done.
The basic elements of the search space.

Example

As an example, let us consider a well-known children's

game called the 15-puzzle. This puzzle consists of a square

frame containing fifteen square tiles and a square hole. The

tiles are numbered from 1 to 15, and may be moved around by

moving a tile into the hole if the tile and hole are adjacent

(thus creating a new hole). The goal of the game is to get the

squares in order (see Figure 2.1).

The 15-puzzle may be modeled as a state-space search

problem as follows (Nilsson [1971], pp. 4-7)*

1. Every board configuration is a state;

2. the operators are

UP: move the hole up

DOWN: move the hole down

RIGHT: move the hole to the right

LEFT: move the hole to the left;

3. the initial state is whatever state the puzzle is received

in;

4. the goal state is as shown in Figure 2.1.

The most likely objective would be to find any path to a

goal

.

Section 2 7

Note that more than one operator may be applicable to a

state, but not all four operators are always applicable. Part of

the state space is illustrated in Figure 2.2,

The above is only one of several possible state-space

representations for the 15-puzzle. For example, one may instead

choose the set of operators Li, Ri, Ui, Di, i= 1 , 2 , . . .
, 1 5 ,

where

Li means "move tile i left",

Ri means "move tile i right",

Ui means "move tile i up",

and Di means "move tile i down".

In this case, there are sixty operators rather than four, but at

most four are applicable at any one time.

2._1_.2. Searching the State Space

One can easily write a nondeterministic state-space

search algorithm:

PROCEDURE state-space:
s := initial state
path := NIL /* list of operators used; init. empty */

WHILE s is not a goal DO
ops := {operators applicable to s}
nondeterministically select an operator r from ops
path := concatenate (path , r

)

s := r(s) /* apply r to s

END
RETURN path

END state-space

The nondeterministic selection is done as in a nondeterminstic

Turing machine: one may think of several copies of the program

being created, one for each operator applicable to s. Whichever

copy of the program finds a path to a goal first returns the path

it finds.

Section 2 8

Obviously, writing a reasonable deterministic state-space

search program requires more thought. Several different

techniques have been proposed.

One class of techniques is referred to as backtracking .

Backtracking procedures explore one path as far as possible,

ignoring all other paths. If the path dead-ends, or if it

otherwise becomes obvious that no paths from the current state

will lead to a goal state, the procedure backtracks to a previous

state and chooses a new operator to extend the path in a

different direction. A backtracking program can thus be written

recursively as

PROCEDURE backtrack (s, path):
IF s is a goal THEN RETURN NIL /* the empty list
IF decide-to-backtrack (s

,
path) THEN RETURN "fail"

ops := {operators applicable to s}
FOR EVERY r IN ops DO /* iterate thru list of ops */

val = backtrack (r(s), concatenate (path , r)

)

IF val is not "fail" THEN RETURN concatenate (r , val

)

END
RETURN "fail"

END backtrack

Another class of procedures is referred to by Nilsson

[1980] as graph-searching procedures. Such procedures explore

several paths simultaneously, keeping track of several "current

states". Some paths may be explored faster than others,

depending on the particular procedure. Examples of such

procedures are

1. breadth-first search, in which all paths are searched at the

same speed;

2. least-cost-first search (e.g. Dijkstra’s algorithm [//////]), in

which at each iteration of the procedure, the path which

Section 2 9

currently has the least accumulated cost (according to some

criterion) is extended;

3. heuristic search, in which various heuristic criteria are

used to determine which path or paths to extend next.

Problem Reduction

An alternative to using state space search for problem

solving is to use a technique known as problem reduction . Here

the problem to be solved is partitioned or decomposed into

subproblems, each of which can be solved separately, in such a

way that combining together the solutions to the subproblems will

yield a solution to the original problem. The subproblems may

each be decomposed into sub-subproblems, which may be even

further decomposed, until primitive problems are generated which

can be solved directly.

As an example, consider the 15-puzzle again. As

illustrated in Figure 2,3, the problem of getting from the

initial state to the goal state may be decomposed into the

following four subproblems:

1. the problem of getting the first row in order;

2. the problem of getting the first two rows in order, given

that the first row is in order;

3. the problem of getting the first three rows in order, given

that the first two rows are in order;

4. the problem of getting all four rows in order, given that the

first three rows are in order.

The solutions to these four subproblems provide a solution to the

original problem simply by concatenating them together.

Section 2 10

Subproblem 1, for example, could be decomposed into the sub-

subproblems of getting each of the four tiles in the first row

into its proper place.

Obviously, there may be more than one way to decompose a

problem. For example, the 15-puzzle could have been decomposed

into the subproblems of getting the four columns correct, rather

than the four rows. We may graphically represent all possible

decompositions of a problem in an problem reduction graph or

AND /OR graph (see Figure 2.4), in which each OR branch represents

a choice of several alternate decompositions, and each AND branch

represents a particular way of decomposing a problem.

Some decompositions of a problem may lead to solvable

subproblems; others may not. To solve a problem using problem

reduction, we must choose a decomposition which yields

subproblems all of which are solvable. To solve each of these

subproblems, we must choose decompositions which yield solvable

sub-subproblems, and so forth. Thus a problem solution is

represented by a solution graph, which may be defined recursively

as follows.

Let n be a node in an AND/OR graph, and let N be a set of

terminal nodes in that graph. One may think of the nodes in N as

the set of solvable primitive problems. A solution graph from n

to is defined as follows.

1. Suppose n is in N. Then the solution graph is simply n

itself

.

2. Suppose n is not in N, and n is terminal. Then there is no

solution graph from n to N.

3. Suppose n is not in N, n is not terminal, and the branch from

Section 2 1

1

n to its children n[1], n[2], n[k] is an OR branch.

Then n is solvable if any one of its children are solvable.

For every i such that there is a solution graph G[i] from

n[i] to N, the union of G[i] with the node n and the arc (n,

n[i]) is a solution graph from n to N. Thus there may be

several solution graphs from n to N.

4. Finally, suppose n is not in N, n is not terminal, and the

branch from n to its children n[1], n[2], ..., n[k] is an AND

branch. Then n is solvable only if every one of its children

is solvable. If for i=1,2,...,k, there is a solution graph

G[i] from n[i] to N, then the union of all of the G[i], the

node n, and the arcs (n, n[i]), i=1,...,k, is a solution

graph from n to N.

Obviously, a problem solved using problem reduction may

have many different solution graphs. Depending on the particular

problem, we may want any solution graph, the solution graph of

least (or highest) cost according to some cost criterion, or

solution graphs satisfying other criteria.

Suppose Q is a problem which may be solved using either

state-space search or problem reduction. Let S be the state-

space graph for Q, and let R be the problem reduction graph for

Q. R is often considerably smaller than S (see Figure 2.5).

However, since the solution to R is a subgraph rather than a

path, a typical search procedure P(R) for R will usually be much

more complicated than a typical search procedure P(S) for S. In

fact, the number of consecutive process states necessary for P(R)

to solve Q may be more than the number necessary for P(S).

Section 2 12

2 . 3 » Examples

We now discuss two examples of the application of search

techniques to problem solving.

Huffman - Clowes Labeling

Propagation of constraints is a state-space problem

solving technique in which the set of possible solutions becomes

further and further constrained by the application of local

constraints on the structure of pieces of the solution, until

only one (or some small number) of possible solutions is left.

One example of propagation of constraints is Huffman-

Clowes labeling [Huffman 1971] [Clowes 1971] [Winston 1977].

This is a technique for analyzing two-dimensional line drawings

of three-dimensional objects composed of flat surfaces. The

technique can determine what part of the drawing is the object

and what part is the background, which intersections of surfaces

are convex and which are concave, and (in some cases) whether the

drawing represents a real three-dimensional object. The

Huffman-Clowes labeling technique is explained below, along with

an explanation of how it can be implemented as a state space

search

.

The restrictions on the applicability of the technique

are—
1 . The drawing must be a simple black-and-white line drawing of

a single object, without any indication of coloration,

illumination, shadows, cracks, or texture of surfaces.

2. Every vertex in the object must be formed by the intersection

of exactly three flat surfaces (although not all three of

Section 2 13

these surfaces need be visible in the drawing).

3. No "pathological" points of view of the object are permitted;

i.e., the point of view given in the drawing must be such

that if the point of view is changed by a very small amount,

the percieved character of the vertices will remain the same.

This prohibits, for example, the point of view shown in

Figure 2.6a, because in this drawing two surfaces appear to

meet which in fact do not meet (see Figure 2.6b).

4. If the result of the analysis is a contradiction, then it is

certain that the line drawing cannot represent a real three-

dimensional object. However, if the analysis does not find a

contradiction, it does not necessarily mean that the drawing

cannot be realized as a three-dimensional object.

A Huffman-Clowes analysis of such a drawing consists of

putting a label on each line to indicate whether it is a convex

or concave intersection of surfaces, or a border of the object

(see Figure 2.7). Given the restrictions cited above, it turns

out that only four types of vertices are physically possible in

any line drawing (see Figure 2.8), and that only sixteen

combinations of labels are physically possible for the lines

coming into these vertices (Figure 2.9).

The "propagation of constraints" idea works as follows:

The lines around an perimeter of the object must be labeled with

clockwise arrows (see Figure 2.10a), and given the sixteen

possible label combinations, this restricts the possible labels

on some of the other lines. For example, the vertex shown in

Figure 2.11a must be labeled as shown in Figure 2.11b, because

there is no other way to label the unlabeled line that yields a

“ Section 2 14

legal combination of labels.

Once the labels have been assigned to some of the other

lines (see Figure 2.10b), this determines the labels on yet more

lines, until the entire drawing is labeled (Figure 2.6). If not

all vertices can be assigned legal combinations of labels, then

the object cannot be a real three-dimensional object satisfying

the restrictions given above. For an example, see Figure 2.12.

We can construct a state space for the Huffman-Clowes

labeling problem as follows. Each state in the space consists of

a drawing of the object to be analyzed, with one or more lines

labeled. The initial state consists of the drawing in which no

lines are labeled except for clockwise arrows going around the

perimeter of the object. Each of the sixteen legal label

combinations determines an operator taking unlabeled vertices or

partially labeled vertices to fully labeled vertices. For

example, the legal label combination shown in Figure 2.13a

corresponds to an operator which applies to any one of the label

combinations shown in Figure 2.13b, and whose application

produces the label combination shown in Figure 2.13a.

The search procedure may now be written as

Section 2 15

PROCEDURE label:
put clockwise labels around the perimeter of the object
WHILE not all lines are labeled DO

IF there is a vertex with only one applicable
labeling operator

THEN apply the operator
ELSE DO

the object may have more than one
legal interpretation */

choose a vertex that is not completely
labeled

nondeterministically choose an applicable
labeling operator

apply the operator
END

END
END label

At the end of the algorithm's operation, if not all vertices have

legal combinations, then the object is not a real three-

dimensional object. However, a legal labeling for the object

does not guarantee that the object can be real (Winston [1977],

p. 60).

2.3.2. STRIPS

STRIPS (Stanford Research Institute Problem Solver) is a

problem-solving system which was originally developed to produce

plans of action for a robot. STRIPS works by representing the

"current state of the world" as a conjunction of predicates

(statements containing variables), and maintaining a stack of

goals and subgoals to be solved. The actions that STRIPS can

perform are represented by operators that transform states into

other states by adding and removing predicates. The search

performed by STRIPS can be thought of as a combination of state

space search and problem reduction.

We will discuss STRIPS in the context of an example found

in Nilsson [1980], Chapter 7. Suppose STRIPS is working in a

Section 2 16

world consisting of three blocks and a robot arm which can pick

up blocks and move them around. One might represent the state of

the world given in Figure 2.14 by the set of predicates given

below:

Predicate Meaning

CLEAR(B) The top of block B is clear.
CLEAR(C) The top of block C is clear.
ON(C,A) Block C is on top of block A.

HANDEMPTY The robot’s hand is empty.
ONTABLE(A) Block A is on the table.
ONTABLE(B) Block B is on the table.

Obviously, the predicates above do not provide a complete

description of the world (nor is a complete description even

possible). However, they provide all the information about the

current state of the world relevant to the problem to be solved.

Suppose we give STRIPS the goal of creating a stack of

three blocks: ON(A,C) & ON(C,B). We must also give STRIPS

operators that will allow it to achieve this goal

Each STRIPS operator consists of three parts: a list of

preconditions, a delete list, and an add list. The preconditions

are predicates, all of which must be satisfied before the

operator can be applied. The predicates may contain variables,

in which case the predicates must hold for some instantiation

(possible set of values) of the variables before the operator can

be applied. The delete and add lists, respectively, are sets of

predicates to be deleted from and added to the current state when

the operator is applied. In applying the operator, the same

instantiations of variables are made in the precondition list.

Section 2 17

delete list, and add list.

There are four operators in our example, as given below.

1. pickup(x)
preconditions
delete list:
add list:

2. unstack(x,y)
preconditions
delete list:
add list:

3. putdown(x)
preconditions
delete list:
add list:

4. stack(x,y)
preconditions
delete list:
add list:

ONTABLE(x)

,

ONTABLE(x)

,

HOLDING(x)

CLEAR(x)

,

CLEAR(x)

,

HANDEMPTY
HANDEMPTY

0N(x,y), CLEAR(x), HANDEMPTY
ON(x,y), CLEAR(x), HANDEMPTY
HOLDING(x), CLEAR(y)

HOLDING(x)
HOLDING(x)
ONTABLE(x)

,

HOLDING(x)

,

HOLDING(x)

,

CLEAR(x), HANDEMPTY

CLEAR(y)
CLEAR(y)

ON(x,y), ClEAR(x), HANDEMPTY

For further explanation of the operation of STRIPS, we

quote from Nilsson [1980], pp. 298 and 302.

STRIPS maintains a "stack" of goals and focuses its
problem-solving effort on the top goal of the stack.
Initially, the goal stack contains just the main goal.
Whenever the top goal in the goal stack matches the current
state description, it is eliminated from the stack ...
Otherwise, if the top goal in the goal stack is a compound
goal, STRIPS adds each of the component goal [predicates], in
some order, above the compound goal in the goal stack. The
idea is that STRIPS works on each of these component goals in
the order in which they appear on the stack. When all of the
component goals are solved, it reconsiders the compound goal
again, re-listing the components on the top of the stack if
the compoound goal does not match the current state
description. This reconsideration of the compound goal is
the (rather primitive) safety feature that STRIPS uses to
deal with the interacting goal problem. If solving one
component goal undoes an already solved component, the undone
goal is reconsidered and solved again if needed.

When the top (unsolved) goal on the stack is a

[single predicate], STRIPS looks for an [operator] whose add
list contains a [predicate that can be instantiated to match
it. The instantiated name of this operator] then replaces
the [predicate] at the top of the stack. On top of the [name
of the operator] is then added the [instantiation] of its

Section 2 18

precondition formula, P. If P is compound and does not match
the current state description, its components are added above
it, in some order, on the stack.

When the top item on the stack is an [operator], it
is because the precondition formula of this [operator] was
matched by the current state description and removed from the
stack. Thus, the [operator] is applicable, and it is applied
to the current state description and removed from the top of
the stack. The new state description is now used in place of
the original one, and the system keeps track of the
[operator] that has been applied for later use in composing a

solution sequence.

Several decisions must be made by the control
component of the STRIPS system. We'll mention some of these
briefly. First, it must decide how to order the components
of a compound goal above the compound goal in the goal stack.

When (existentially quantified) variables occur in
the goal stack, the control component may need to make a

choice from among several possible instantiations. We can
assume that a different successor can be created for each
possible instantiation.

When more that one STRIPS [operator] would achieve
the top goal on the goal stack, we are again faced with a

choice. Each relevant rule can produce a different successor
node

.

The operation of STRIPS on our example is illustrated in

Figures 2.15 and 2.16, which are taken from Nilsson [1980], pp.

300-301

.

19

3. KNOWLEDGE REPRESENTATION

The knowledge needed by a problem solving system can be

partitioned into two types of knowledge: declarative knowledge

(as of facts, or of the current state of the problem domain), and

procedural knowledge (knowledge of how to solve the problem). We

briefly discuss several types of representation of each of these

kinds of knowledge. For a further discussion of issues in

knowledge representation, the reader is referred to Mylopoulos

[1980].

Declarative knowledge

First -Order Predicate Calculus

Declarative knowledge may be thought of as the knowledge

of facts about the state of the world in which a problem is being

solved. One well-known way to represent such knowledge is by

means of formulas in first-order predicate calculus (FOPC).

Simple declarative facts can often be represented as instantiated

predicates. For example,

John gave Mary a book

can for some purposes be adequately represented by

GIVE (John, Mary, book).

More complicated statements may require a more complicated

representation, as in the use of

(x)(y)(z) (R(x,y) & R(y,z) -> R(x,z))

for the statement that the relation R is transitive.

- Section 3 - 20

Frames

Another way of representing knowledge is in terms of

frames [Minsky 1975] [Winston 1977, Chapter 7] [Nilsson 1980,

Chapter 91, in which all the knowledge about a particular object

or event is stored together. Such a representation cannot

represent any more concepts than FOPC can, but the organization

of the knowledge can be useful for modularity and accessibility

of the knowledge. In addition, frame systems often allow ways to

specify default values for pieces of information about an object

when that information is not explicitly given.

Many different variants have been proposed for frame-

based knowledge representation, but most of them include the idea

of having different types of frames for different types of

objects. For example, a frame for a book might be a data

structure including fields or slots for the author, title, and

publication date of the book, as well as the number of pages,

color of the cover, etc. To describe a particular book, a copy

of this book frame would be created, and the slots would be

filled in with the information about the particular book being

described

.

Semantic Networks

Semantic networks (or semantic nets) are a third way to

represent declarative knowledge. They are like frames in the

sense that the knowledge is organized around the objects being

described, but here the objects are represented by nodes in a

graph and the relationships among them are represented by labeled

arcs

.

- Section 3 - 21

Example

As an example, consider the following set of facts.

Bill took the book from Margaret.
Bill is a professor.
Margaret is a doctor.
Margaret lives in Akron, Ohio.

These facts, and some related facts, can be directly represented

in FOPC as

TAKECBill, Margaret, book)
OCCUPATIONCBill, professor)
OCCUPATION (Margaret

,
doctor)

ADDRESS (Margaret
,
Akron-Ohio)

PERSON(Bill)
PERSON(Margaret)
OBJECT(book)
PROFESSION (professor

)

PROFESSION (doctor

)

To put this information into frames, we first need to decide what

kinds of frames to use. Using Shank's notion of conceptual

dependency [Schank 1975] [Winston 1977, pp. 190-191], we can

consider "take" to be a transfer of possession in which Bill

transfers the book from Margaret to himself. The frame for a

transfer of possession might be

name of frame:
type of frame: transfer of possession
source:
destination:
agent

:

object:

Constructing similar frames for the other objects and filling in

all the slot values might yield the following:

“ Section 3 - 22

name of frame

:

T1
type of frame

:

transfer of
source

:

Mary
destination

:

Bill
agent

:

Bill
object

:

book

name of frame

:

0C1
type of frame

:

occupation
worker

:

Bill
job: professor

name of frame

:

0C2
type of frame

:

occupation
worker

:

Margaret
job: doctor

name of frame

:

Bill
type of frame

:

person
(other information about Bill)

name of frame: Margaret
type of frame: person
. . . (other information about Margaret) . . .

name of frame: ADR1
type of frame: address
person: Margaret
street address:
city: Akron
state: Ohio

name of frame: book
type of frame: physical object

All of the above information can be translated directly

back into FOPC, but the formulas look somewhat different than

before. This time, every predicate is binary, and the first

argument to each predicate is the frame name.

ELEMENT-0F(T1
,
transfer-of-possession-events

)

SOURCEdI, Mary)
DESTINATIONdl

,
Bill)

AGENTdl, Bill)
OBJECTdl, book)

ELEMENT-OF (OC 1 ,
occupation-events)

W0RKER(0C1, Bill)
J0B(0C1, professor)

- Section 3 - 23

ELEMENT-0FC0C2
,
occupat ion -event s

)

W0RKERC0C2, Margaret)
J0BC0C2, doctor)

ELEMENT-OF (Bill
,
persons)

. . . (other information about Bill) . . .

ELEMENT-OF (Margaret
,
persons)

. . . (other information about Margaret) . . .

ELEMENT-OF (ADR 1 ,
address-events)

PERS0N(ADR1, Margaret)
CITY(ADR1, Akron)
STATE(ADR1, Ohio)

ELEMENT-OF (book
,
physical -objects

)

Putting this information into a semantic net would create a

structure similar to that shown in Figure 3.1.

As can be seen, collections of primitive facts' can be

represented quite nicely using frames and semantic nets.

However, the representation of complex facts, such as the

transitivity formula

(x)(y)(z) (R(x,y) & R(y,z) -> R(x,z))

mentioned earlier, is more difficult. For more information on

how to do this, see Nilsson [1980], Chapter 9, or Schubert

[1976].

The main advantage of frames or semantic nets over

logical representation is that for each object

,

event, or

concept
,
the relevant information is all collected together

.

This is convenient for accessing and manipulating the

information, and also allows for a convenient way to create

default values when information about an object or event is not

explicitly given. For example, in the frame for a book, one

might have a slot to indicate whether the book is hardbound or

paperback. If we are not given a value for this slot, we might

- Section 3 - 24

want to put in the value "hardbound", with a flag indicating that

this is a guess. This value could later be changed if new

information is given.

Several computer languages have been or are being

developed to provide ways to manipulate frames and semantic nets.

Examples are KRL [Bobrow et al. 1977], FRL [Goldstein et al.

1977], NETL [Fahlman 1979], and KLONE [Brachman 1979].

Procedural Knowledge

3^.2.J_. Programs and Pattern - Invoked Programs

Procedural knowledge is the knowledge of what can be done

to change the problem states in order to solve a problem.

Obviously, such knowledge can be represented as computer programs

in the usual sense of the term, and this is undoubtedly the best

way to represent procedural knowledge when the procedure is

well-understood. For some problems, however, the precise way to

solve a problem may not be known. For example, the search

procedures discussed in Section 2 typically must try several

alternate paths before finding one which leads to a goal node.

In such situations, it is sometimes useful to encode

knowledge in the form of pattern - invoked programs ,
which are

invoked automatically whenever certain conditions are found to

hold in the data representing the current problem state. The

STRIPS operators in Section 2.3.2 are simple examples of such

programs, and the invoking mechanism for them is the STRIPS

control strategy.

Several different programming languages (such as PLANNER

[Hewitt 1972], CONNIVER [Sussman et al. 1971], and PROLOG [van

- Section 3 - 25

Emden et al. 1976] [McDermott 1980] have been written which allow

for pattern-directed invocation in one form or another, and which

often include features such as automatic backtracking if an

attempted solution fails.

3*2,2. Production Rules

One type of pattern-invoked program which is of

particular interest is the production rule ,
which is a degenerate

program of the form

IF condition THEN primitive action

where the condition is usually a conjunction of predicates

testing properties about the current state, and the primitive

action is some simple action which changes the current state.

Both the labeling operators of Section 2.3.1 and the STRIPS

operators of Section 2.3.2 can be thought of as production rules.

A problem solving system in which the domain-dependent

procedural knowledge is represented using production rules is

known as a production system . The organization for production

systems is similar to the organization of state space search

procedures given in Section 2.1, with the operators replaced by

production rules:

CONTROL STRUCTURE: knowledge about how to
do what can be done.

Keeps track of problem states.
Decides which rules to apply.

PRODUCTION RULES: determine about what can be done.
If applied, they produce changes to the database.

DATABASE: the declarative knowledge about the problem.

- Section 3 - 26

3 > 2 . 3 » Logical Representation and PROLOG

Procedural knowledge can also be represented in FOPC,

provided suitable interpretations are made of the FOPC formulas.

The programming language PROLOG [McDermott I960] is an example of

such an approach. PROLOG makes use of the fact that a formula

such as

B1 & B2 & ... & Bn -> A

can be thought of either as the logical statement that A is true

whenever B1
,

B2, ...» Bn are true, or as a procedure for

producing a state satisfying condition A. The three basic

statements in PROLOG are as follows:

statement meaning

A. A is a goal
A. A is an assertion
A Bl, ..., Bn. B1 & ... & Bn -> A

A and all of the B's must be predicates. and all variables are

considered to be universally quantified (i .e., the statement is

taken to be true for all possible values of the variables).

A PROLOG program may contain several different ways to

establish a predicate A; for example.

A •
^ Bl, B2

,
. .

. ,
Bi

.

A •
•
• Cl, C2, ..., Cj.

This corresponds to the AND/OR graph shown in Figure 3.2. The

solution of a problem presented as a set of PROLOG statements

proceeds by doing a depth-first search of the corresponding

AND/OR graph, until an instantiation of a set of assertions is

found which provides a solution graph.

- Section 3 - 27

As an example (due to McDermott [I960]), a PROLOG program

to append items to a list can be written as

append([], L, L).

append([X | LI], L2, [X
| LSI) append(L1, L2, L3).

In the above statements, the square brackets denote lists:

[a,b,c] is the list containing a, b, and c; [] is the null list;

and [a I
[b,c]] = [a,b,c], L, LI, L2, and L3 are variables

representing lists, X is a variable representing a list element,

and append(U , V,W) is a predicate saying that W is the

concatenation of U and V. The meaning of the statements is thus

1. The concatenation of [] with L is L.

2. If the concatenation of LI with L2 is L3, then the

concatenation of [X | LI] with L2 is [X I L3]»

To use the above PROLOG program to "set" the variable A

to the concatenation of [a,b] with [c,d], one would write

append ([a , b] ,
[c,d]. A)." PROLOG would then try to instantiate A

to whatever value would make the predicate true. The first

statement cannot be invoked since [a,b] is not equal to [], but

by making the instantiations X = a, LI = [b], L2 = [c,d], and A =

[a,L3], the second statement applies. Thus the recursive call

append ([b], [c , d], L3) " is evaluated. Again the second

statement applies, with the instantiations X = b, LI = [], L2 =

[c,d], and L3 = [b,L3] (a different X, LI, L2, and L3, of

course), so recursive call append ([], [c , d], L3) " is evaluated.

Clause 1 applies, giving L3 = [c,d]. Returning from the

recursive calls, we have A = [a I [b j
[c,d]]] = [a,b,c,d], as

desired

.

28

4. EXPERT SYSTEMS

Feigenbaum [1980, p. 1], describes an expert system as

an intelligent computer program that uses knowledge and
inference procedures to solve problems that are difficult
enough to require significant human expertise for their
solution. The knowledge necessary to perform at such a

level, plus the inference procedures used, can be thought of
as a model of the expertise of the best practitioners of that
field.

Expert systems have been developed for a number of

different problem domains. Below is an incomplete list of such

systems

.

system name expertise reference

DENDRAL hypothesizing
molecular structure
from mass spectrograms

Feigenbaum et al. [1980]

MACSYMA mathematical formula
manipulation

Moses [1975]

MYCIN
CASNET
INTERNIST
MDX
KMS
PUFF

medical consulting
II II

II II

II II

II II

II II

Davis et al. [1977]
Weiss et al. [1978]
Pople [1977]
Chandrasekaran et al. [1979]
Reggia et al . [1981]
Osborn et al. [1979]

AQ1 1 diagnosis of plant
diseases

Chilausky et al. [1976]

PROSPECTOR predicting likely
ore deposit locations

Hart et al. [1978]

MOLGEN planning DNA
experiments

Martin et al. [1977]

In addition, there are several computer systems being developed

to provide tools for creating expert systems for various problem

domains. These systems include EMYCIN [van Melle 1979], EXPERT

Section 4 29

[Weiss et al. 19791, KMS [Reggia et al. 1981], and AGE [Nii et

al. 19791. Such systems typically provide formats for

representing both procedural knowledge and declarative knowledge,

a control structure or control structures for manipulating this

knowledge, and an interface for interaction with a human user.

This section contains overviews of several expert

systems. The systems described were chosen to illustrate the

variety of approaches useful in building expert systems. Section

4.1 is a description of MYCIN. Section 4.2 describes CASNET.

Section 4.3 describes Hearsay-II, a speech understanding system

(Erman, et al. [1980]). Section 4.4 contains a few comments

about DENDRAL and MDX.

4.J_. MYCIN

MYCIN [Davis et al. 19771 is a production system, written

in LISP, to diagnose infectious diseases and recommend treatment

for them. MYCIN interacts with the user, asking questions about

the symptoms of the disease, to determine a diagnosis.

In medical diagnosis, the knowledge of relevant facts and

the causal associations between symptoms and diseases may not be

completely certain. MYCIN handles this problem by associating

with each fact and production rule a "certainty factor" (CF)

indicating the certainty with which it is believed to be true.

The CF is a number in the interval [-1,11. Positive and negative

CF ' s indicate a predominance of confirming or disconf irming

evidence, respectively. CF’s of 1 or -1 indicate absolute

knowledge

.

Section 4 30

A typical MYCIN production rule is the following [Davis

et al. 1977, p. 21]

:

PREMISE ($AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES

)

(SAME CNTXT PROTAL GI)

)

ACTION (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

If (1) the infection is primary-bacteremia,
(2) the site of the culture is one of the ster ilesites

,

and
(3) the suspected portal of entry of the organism is

the gastro-intestinal tract,
then there is suggestive evidence (.7)

that the identity of the organism is bacteroides.

$AND, a multi-valued AND operation, is used to manipulate CFs as

described below.

In MYCIN, declarative knowledge is represented in the

form of 4-tuples such as the following (Davis et al. [1972], p.

22)

:

(SITE CULTURE-1 BLOOD 1.0)
(IDENT ORGANISM-2 KLEBSIELLA .25)
(IDENT ORGANISM-2 E.COLI .73)
(SENSITIVS ORGANISM-1 PENICILLIN -1)

When MYCIN evaluates its production rules, it does so as

follows

.

1 . The CF of a conjunction of several facts is taken to be the

minimum of the CFs of the individual facts.

2. The CF for the conclusion produced by a rule is the CF of its

premise multiplied by the CF of the rule.

3. The CF for a fact produced as the conclusion of one or more

rules is the maximum of the CF's produced by the rules

producing that conclusion.

This is illustrated in the following example.

Section 4 31

Suppose MYCIN is trying to establish fact D, and the only

rules concluding anything about D are

IF A and B and C, THEN CONCLUDE D (CF = .8)

IF H and I and J, THEN CONCLUDE D (CF = .7)

Suppose further that facts A, B, C, H, I, and J are known with

CF's .7, .3, .5, .8, .7, and .9, respectively. Thus the

computation, as shown in the diagram below, produces a CF of .49

for D

.

IF A and B and C, THEN D (CF=.8)
i

CF(A) = .7 i I— > .8x.3 = .24 |

CF(B) = .3 1— > min = .3 I !

CF(C) = .5 i 1

I
— > max = .49

IF H and I and J, THEN D (CF=.7)
I !

CF(H) = .8 I I— > .7x.7 = .49 I

CF(I) = .7 I— > min = .7 I

CF(J) = .9 !

In the above example, the facts A, B, C, H, I, and J

would typically be established by other production rules bearing

on them. The chaining of these rules together to establish D

corresponds to searching an AND/OR graph. MYCIN diagnoses

diseases by setting up the diagnosis problem as a goal and then

doing a depth-first search of the resulting AND/OR graph. The

search strategy of MYCIN is fairly simple, as shown in Figure

4.1. For example, suppose MYCIN's goal is to find the value of

A, and some of its rules are

1. IF F=f THEN CONCLUDE C=c (CF = .5)

2. IF G=g and H=h THEN CONCLUDE C=c (CF = .6)

3. IF H=h and I=i THEN CONCLUDE C=c’ (CF = .7)

4. IF B=b and C=c THEN CONCLUDE A=a (CF = .8)

. . . other rules making conclusions about A ...

Section 4 32

Suppose furthermore that it knows that the values of B, F, G, H,

I, and E are laboratory data which are determined by asking the

user for their values. The AND/OR graph corresponding to these

rules is shown in Figure 4.2. MYCIN searches this graph depth

first from left to right, determining the values of B, F, G, H,

I, C, and A in turn.

Note that when a rule such as "IF B=b and C=c THEN

CONCLUDE A=a (CF = .8)" is invoked, the subgoals MYCIN creates

are not "prove B=b" and "prove C=c" but rather "find the value of

B" and "find the value of C". This enables the system to

maintain focus on a particular topic when interacting with the

user, rather than jumping around from topic to topic. Also,

since the information accumulated about the subgoals is saved, B

and C need not be evaluated again if another rule is ever

encountered which requires information about B or C in its

premises

.

Note also that every rule relevant to a particular goal

must be invoked unless the value of the goal can be established

with CF 1 or -1. However, if one of the premises of a rule is

already known to have CF -1, then that rule need not be invoked,

since it cannot possibly conclude anything.

One major problem with medical diagnosis is that the

requisite knowledge is generally accumulated exper ientially by a

physician, and cannot all be regurgitated on demand to be put

into a computer system. MYCIN handles this problem by means of

the following simple learning mechanism.

A user who already knows the answer to some diagnosis

problem can give the problem to MYCIN to solve. If MYCIN reaches

Section 4 33

an incorrect conclusion, the user can invoke a question-answering

system to find out which rules were invoked and why. If the user

decides that one of the rules is incorrect or that a new rule

needs to be added to MYCIN, he can make the appropriate change or

addition. Since the rules are invoked automatically whenever

they have bearing on a goal, no other change need be made to the

system to assure that a rule will be used.

The advantages of the architecture of MYCIN are the

following

:

1 . Each production rule is completely modular and independent of

the other rules. Thus it is easy to change or add to MYCIN's

knowledge base.

2. The stylized nature of the production rules makes the coding

easy to examine. Thus the question answering system can

supply clear answers, in most cases, to questions about how

and why it made its diagnosis.

3. Each rule represents a small, isolated chunk of knowledge.

Thus a physician familiar with the system may be able to

formulate new rules for the system if necessary.

The disadvantages are as follows:

1. Sometimes it is not completely natural to represent a piece

of knowledge about a disease as a production rule.

2. Since MYCIN searches backwards from the goal of diagnosing

and treating a disease to the known data about the patient,

it is not always easy to map a sequence of desired actions or

tests into a set of production rules whose invocation will

provide that sequence.

Sometimes it is desirable to write rules in a more general3.

- Section 4 34

format than that given earlier. For ex

a rule saying "for each organism such

A few such rules have been put into

causes other problems. For example,

system cannot explain the invocation

well

.

ample, one might want

that . .
.

,

conclude . .

.

the system, but this

the question-answering

of these rules very

As of the date of our reference on MYCIN (Davis

[1977]), MYCIN could perform diagnoses with an agreement

12 % with medical experts. This figure has probably

since

.

et al

.

of about

improved

It is possible to remove the knowledge base of MYCIN and

substitue a set of rules from another domain. This has been

done, for example, for the problem of diagnosing lung diseases,

yielding a program called PUFF [Osborn et al. 19791*

4.2. CASNET

CASNET [Weiss et al. 1978] is a computer system for

medical decision-making which uses production rules, semantic

nets, and some other features as well. CASNET is constructed

using the following three levels of description of a disease:

1. Observations (or tests). These consist of disease symptoms,

laboratory tests, etc., and form the direct evidence that a

disease is present.

2. Pathophysiological states. These are the internal conditions

assumed to occur in the patient. "States" as used here are

different than the problem states of Section 2. Here, each

state is a condition which may or may not be present, and the

states are not mutually exclusive.

Section 4 35

3. Categories of disease. Each category consists of a pattern

of states and observations.

For an example involving glaucoma, see Figure 4.3. The therapy

recommendations made by CASNET are determined by all three levels

of description of a disease.

In CASNET, the pathophysiological states of a disease are

causally related by rules of the form

a[i
, j]

n[i] > n[j]

where n[i] and n[j] are states, and a[i,j] is the causal

frequency with which state n[i], when present in a patient, leads

to state n[j]. Since the states are not mutually exclusive, the

sum

2 j]

j

may exceed 1 . The rules are combined together into a causal

network which shows the courses that a disease can take.

Starting states , or states in the network without any

predecessors, are taken to be conditions which can arise

spontaneously in the patient. Each other state is assumed to

occur only as a result of the occurrence of a state immediately

preceding it in the network. For example, see Figure 4.4.

There are also rules for associating tests (or

observations) with states. These rules are of the form

Section 4 ~ 36

Q[i
, j]

t[i] -_=_=-_» = > n[j]

where t[i] is a test (or observation) or Boolean combination of

tests, n[j] is a state, and Q[i,j], a number in the interval

[”1,1], is the confidence with which t[i] is believed to be

associated with n[j], A positive result for test t[i] is taken

to indicate that state n[j] is probably present or not present in

the patient, as Q[i,j] is greater or less than zero,

respectively

.

Evaluation of the rules is as follows: if

Q[i, j] Q[k, j]
t[i] n[j] and t[k] — > n[j]

are two rules about n[j], and both tests t[i] and t[k] are

positive, then (heurist ically) the rule taken to be applicable is

the one which is believed "most reliable", i.e., the one with the

highest absolute value of Q. This value of Q is then used as the

certainty factor (CF) with which it is believed that state n[j]

has occurred in the patient. If the CF for n[j] is above an

arbitrary threshhold H, then state n[j] is assumed to be

confirmed. If the CF is below -H, then state n[j] is assumed to

be denied. Otherwise, n[j] is taken to be undetermined.

CASNET allows for three main strategies for selecting

tests for the user to perform on the patient: (1) local logical

constraints among questions CASNET can ask the user, (2)

likelihood measures over the pathophysiological states, and (3)

calculation of the most likely cause of the disease. Each

approach is explained briefly below.

Section 4 37

(1) For the local logical constraint approach, questions

on related topics are organized into small tree structures and

are asked only if certain logical conditions are detected to

hold.

(2) Likelihood measures over the states in the network

are computed by assuming the occurrence (or nonoccurrence) of

whatever states in the network have been confirmed (or denied),

and using the causal frequency values in the network--as if they

were probabilities— in the usual conditional probability

formulas, to compute for each state n[j] a "conditional

likelihood" W(n[j]) that n[j] can be confirmed. To use these

likelihood values for test selection, each test t[i] is assumed

to have a cost C(t[i]). One approach is to select a state n[j]

and test t[i] to maximize the ratio

W(n[j])/C(t[i]),

given that test t[i] tests for state n[j]. Another approach is

to look only at tests t[i] for which C(t[i]) is less than some

cutoff, and select n[j] and t[i] to maximize W(n[j]), given that

t[i] tests for n[j].

(3) The most likely cause of a disease is taken to be the

starting state capable of explaining the largest number of

confirmed states in the network without contradicting the denial

of any denied states in the network. This is the starting state

from which one can produce paths traversing the greatest number

of confirmed states without traversing any denied states (if two

such starting states exist, the one with the greatest likelihood

measure is selected). If this state does not explain all

confirmed states in the network, a second starting state is

Section 4 -- 38

selected in the same manner to explain the remaining confirmed

states, and so forth, until all confirmed states have been

covered. Tests are then selected which have bearing on the

selected starting states.

Sometimes the test results may contradict or conflict

with the model, as in the case where all paths into a confirmed

state contain a denied state or an undetermined state (I CF
|

< H)

for which CF < 0. CASNET includes some ways of dealing with such

situations, but these will not be described here.

Pathophysiological states are associated with disease

categories as follows. Let n[1], n[2], ..., n[k] be the states

in a causal pathway in the network, with starting state n[1].

Then one can build a classification table of the form

first unconfirmed disease
state in the pathway category

n[2] D[1]
n[3] D[2]

• 0 e

n [k

]

D [k-1]

D[k]

where each D[i] is a disease category. (The actual

implementation in CASNET is somewhat different, in that a single

classification table may include information about several causal

pathways. However, the usage of these tables corresponds to the

description given here.)

Each starting state has pointers to the classification

tables relevant to the diseases caused by that starting state.

These tables are used, once the most likely starting states are

found, to determine the disease categories of the patient.

Section 4 39

The classification tables may be augmented to include

treatment recommendations:

first unconfirmed disease recommended
state in the pathway category treatment

n[2] D[1] T[1]
n[3] D[2] T[2]

• • •

n[k] D[k-1] T[k-1]
D[k] T[k]

However, the problem of recommending treatment is usually more

complicated. Instead of a single treatment T[j] for each

category D[j], there may be a set T[j,1], T[j,2], T[j,n] of

several possible treatments. Which treatment is actually chosen

is determined by rules of the form

p[i, j,k]
t[i] — > T[j,k]

which assign preferences to treatments based on test results.

Preferences are computed for various treatments associated with a

disease category in the same way as certainty factors were

computed for pathophysiological states earlier, and the treatment

of highest preference is recommended.

As of 1978, CASNET (as set up to handle glaucoma) had

more than 100 states, 75 classification tables, and 200 diagnosis

and treatment statements. CASNET’s rules must be invoked once

for each eye, and in addition, there are special rules for

various types of binocular comparisons. According to Kulikowski

[1981], knowledge from medical textbooks alone allowed CASNET to

perform at 70 % to 75% accuracy. To get the performance above

Section 4 40

90%, it was necessary to incorporate information obtained

directly from human experts.

j4.3^. Hearsay - II

Hearsay-II is a computer system, written in a computer

language called SAIL, for speech understanding. Strictly

speaking, it is not an expert system according to Feigenbaum’s

definition quoted earlier, because its performance is not as good

as that of any reasonably good speaker of English. However, it

is representative of the state of the art in automated speech

recognition, and the techniques used in its construction are of

interest to designers of expert systems.

The performance of Hearsay-II is as follows (as adapted

from Erman et al. [1980], p. 239):

Section 4 41

Number of speakers: One

.

Environment

:

Computer terminal room 065 dB).

Microphone

:

Medium quality, close talking.

System speaker-tuning: 20-30 training utterances.

Speaker adaptation: None required.

Task: Document retrieval.

Language constraints: Context-free semantic grammar;
other restrictions.

Test data: 23 utterances, brand new to the
system, run blind.
7 words/utterance avg.
2.6 seconds/utterance avg.

Accuracy 9% sentences misunderstood; 10%
sentences not word-for-word correct
but meaning understood anyway.

Computing resources: 60 million instructions per second
of speech on a PDP-10.

Time required to
comprehend speech:

On the order of 10 times the length
of the utterance.

The architecture of Hearsay-II is shown in Figure 4.5.

The KS's, or knowledge sources , indicated in the figure are

pattern-invoked computer programs (as described in Section 3).

Each KS consists of a condition program (which evaluates whether

the KS is applicable) and an action program (to accomplish

whatever results the KS is to produce). The system contains

approximately 40 KS's, which range in size from five to one

hundred pages of source code apiece. Thirty pages is a typical

KS size. Each KS has up to 50,000 bytes of its own local data

storage

.

Section 4 42

The KS ' s communicate with each other by posting messages

on a global data structure called the blackboard . Messages

posted on the blackboard are noted by the blackboard monitor ,

which creates entries on the scheduling queues for any KS whose

applicability conditions might be satisfied. For each KS

condition program or action program on the queues, the scheduler

creates a priority. The highest priority activity is removed

from the queues and executed.

The blackboard is divided into several levels , which can

be thought of as the various levels in a problem-reduction tree

at which subproblems are located. The condition program of each

KS tests events occurring at a particular level or levels of the

blackboard, and the action program of the KS puts hypotheses at a

particular level or levels of the blackboard. This is

illustrated in Figures 4.6 and 4.7. As can be seen, Hearsay-II

accomodates both KS's which operate top-down and KS's which

operate bottom-up.

Examples of KS's are the following:

1. SEG divides the input signal up into segments, and assigns to

each segment several alternate possiblilites for the phoneme

it might be.

2. PARSE is a KS which takes sequences of words and parses them

into phrases. PARSE consists of an encoding of the grammar

for the task language as a network, and procedures for

searching the network to parse a sequence of words.

Considered as a tool for designing speech understanding

systems, Hearsay-II provides

1. ways to define blackboard levels, configure KS groups, access

Section 4 43

and modify blackboard hypotheses, activate and schedule KS's,

and debug and analyse KS performance. It also provides ways

to specify which KS’s should have their condition programs

invoked when new hypotheses appear on the blackboard, how to

read hypotheses from the blackboard, and how to put new

hypotheses onto the blackboard.

Probably the main features that distinguish the Hearsay-

II architecture from that of MYCIN are the the use of arbitrary

pattern-invoked programs as units of knowledge, rather than

production rules, and the flexibility of the scheduler (as

opposed to strict top-down invocation).

For a large, complex problem such as speech

understanding, this offers several advantages. Since the KS's

can be arbitrarily complex— and arbitrarily different in their

internal operation—this provides a way to implement whatever

problem-solving approach is most appropriate at each level of

processing. Each KS may itself be a small knowledge-based

problem solver, and its internal processes have only local

effects, rather than causing potential interactions with the

entire rest of the system. This alleviates the problems often

encountered with ’’combinatorial explosion" when production

systems are used on very large problems. In fact, when portions

of Hearsay-II were experimentally rewritten as a production

system, the production system version was found to run

approximately 100 times as slow [McCracken 19793.

Section 4 44

4.4. DENDRAL and MDX

This section contains a few comments about DENDRAL and

MDX. Rather than discussing these systems in detail, this

section merely outlines some of the similarities and differences

between them and the systems described earlier.

DENDRAL is a computer system which proposes plausible

chemical structures for molecules, given their mass spectrograms.

DENDRAL uses a "plan, generate and test" technique. First,

constraints on the problem solution are inferred from mass

spectrometry data. Second, the program generates all molecular

structures satisfying these constraints, as well as general

chemical constraints. Finally, the proposed structures are

tested in a more sophisticated manner for compatibility with the

mass spectrometry data.

According to Nilsson [1980, p. 41], the "generate" part

of DENDRAL can be viewed as a production system. However, its

operation is different from MYCIN.

MYCIN operates top-down. When MYCIN sets up a goal, it

uses its rules to decompose the goal further and further, until

primitive problems are reached which are answered in the data for

the problem. The "generate" portion of DENDRAL, however, starts

with the data and operates bottom-up. It has a number of rules

corresponding various quantities of molecules with various pieces

of molecular structure, and it applies these rules to the data to

hypothesize structures for more and more pieces of the molecule.

Examples of the operation of the "generate" part of DENDRAL and

the types of molecular structures it proposes are shown in

Figures 4.8 and 4.9.

Section 4 45

For more information about DENDRAL, the reader is

referred to Feigenbaum et al. [1971].

MDX is a medical diagnosis system, still under

development, whose architecture is designed to try to handle the

’’combinatorial explosion” (mentioned at the end of Section 4.3)

which may interfere with efforts to solve large problems.

MDX consists of a collection of small experts which can

be thought of as being somewhat similar to Hearsay-II’s KS’s.

These expert systems are organized in a hierarchy which

corresponds to the taxonomy of a disease. For example, consider

the classification in Figure 4.10 of various types of a medical

condition called cholestasis. A complete implementation of MDX

for cholestasis (not yet finished) would include an expert system

corresponding to each node of the classification tree. The

communication and transfer of control among these experts,

instead of being handled by global mechanisms such as Hearsay-

II’s blackboard and scheduler, is handled by the experts

themselves, and is constricted to flow along the lines of the

hierarchy

.

The hierarchy of experts corresponding to the tree of

Figure 4.10 might be entered at the root of the tree, by a

request for a diagnosis. The expert at each node, when invoked,

does some processing involving its specialized knowledge, and may

request information from other experts in order to make a

diagnosis. Communication and transfer of control among experts

is restricted to go along the arcs of the tree. Thus if the

cholestasis expert were to send a message or request to the

cholangitis expert, it would pass through the extra-hepatic and

Section 4 46

Inf lamination experts along the way, and would perhaps be modified

by them to put it into a form understandable to the cholangitis

expert. If an expert is not implemented, a human being at a

computer terminal can take the part of that expert, and the rest

of the system will not know the difference.

For more information about MDX, see Chandrasekaran

[1979].

47

5. PROCESS PLANNING REQUIREMENTS FOR THE AMRF

Process planning is the task of determining a plan of

action for manufacturing a part. This activity is distinct from

production planning , which involves taking the process plans for

all parts to be produced and scheduling the factory’s resources

to perform the activities specified by the process plans.

This section contains a summary of the requirements for a

process planning system for the Automated Manufacturing Research

Facility (AMRF). Section 5.1 briefly describes the activities

that the process planning system must perform, and makes some

suggestions for how these activities might be done. Section 5.2

describes some of the three-dimensional modeling and reasoning

capabilities required for process planning.

Process Planning Activities

Manufacturing a metal part consists of taking a piece of

stock and performing various processes or operations on it to

transform it into the desired part. The piece of material being

transformed is called the workpiece. In the AMRF, the processes

to be considered are those performed by machine tools (lathes,

mills, etc.), which are equipped with cutting tools to remove

material from the workpiece. A machined surface on the workpiece

is any geometric surface or combination of geometric surfaces

produced by a single machine tool operation. For example, a hole

is a single machined surfaces, although it consists of a cylinder

and a cone (see Figure 5.1). For more information on machining

operations, see Boothroyd [19751, Chapter 1.

Section 5 48

In rough outline, process planning in the AMRF will

consist of the following activities.

1. Reception of a request for a process plan for a part.

2. Selection of a piece of stock.

3. Selection of appropriate machining processes.

4. Selection of an appropriate type of machine tool and cutting

tool for each process.

5. Fixture selection for each process.

6. Robot gripper selection for each process.

7. Selection of a sequence (or several possible sequences) for

the processes.

8. Selection of the work station to be used for each process.

9. Determination of machine tool parameters (feed rate, etc.).

10. Determination of tool trajectories for each process.

11. Creation of instructions to the machine tool, robot arm,

robot cart, work station, cell, and other levels of the

factory

.

12. Verification of the process plan.

The above list is incomplete. Robot sensors, probes,

reference surfaces (surfaces to be inspected), and inspection

techniques must also be selected for use in monitoring the

manufacture of the part. Instructions must be created for the

sensors and probes. To handle the errors that the sensors may

detect, error recovery instructions must be created for the

machine tool, robot arm, robot cart, and other levels of the

factory. To simplify the discussion, and because of lack of

time, these activities are not discussed here.

Section 5 49

There are many problems involved with automating the

activities listed above. Complex reasoning about the properties

of the part is required for practically every phase of process

planning. The representation of the part used in the computer

systems which do the process planning, and the capabilities for

manipulating this representation and reasoning about it, must be

quite sophisticated.

The author knows of no geometric modeling system which is

currently capable of handling the problems involved. These

problems are discussed further in Section 5.2. However, partial

automation of process planning can be done without requiring the

full capabilities of such a system. Some approaches for doing

this are suggested below.

Receiving the Process Planning Request

In an automated manufacturing system, handling the

reception of a request to do process planning will require

constructing a computer representation of the part. This could

conceivably be done either by having an Computer Aided Design

(CAD) system on which a user designs the part, or by having an

optical scanning system capable of reading engineering drawings.

The former approach seems more reasonable. Engineering drawings

are produced with the idea that a human will be reading them, and

some design details may not explicitly be represented since they

would be obvious to an experienced human. A CAD system, however,

could be designed to request explicitly all information necessary

to insure an unambiguous specification of the part.

Section 5 50

Creating such a CAD system presupposes a solution to the

problems of adequately representing and reasoning about the part

automatically. Until these problems have been solved, it is more

likely that information about the part will be entered into the

AMRF through a variety of interactive computer systems designed

to handle various phases of process planning. If desired, these

systems could operate through a single user interface which

organizes the requests of the various systems in a user-friendly

manner

.

Organizing the CAD system as an interface to handle

interactions between the user and several computer systems

(rather than as a self-contained system) might be the best

approach even if total automation of the process planning becomes

feasible. Different types of information may be required of the

user during different phases of process planning, and it may be

easier to let each system request the information as it is needed

rather than design a self-contained CAD system capable of

deciding when all necessary information has been entered.

5 .^. 2 , Stock Selection

Selecting a piece of stock appropriate to be machined

into a part requires examining the geometry of the part to be

created, to decide what kind of stock is suitable, or whether an

existing piece of scrap can be used rather than a new piece of

stock. The basic problem is to select the smallest piece of

stock which can be used to make the part, but there are some

additional complications.

Section 5 51

For example, a cylindrical piece of stock should be

selected for rotational (lathe-turned) parts. Rectangular pieces

of stock are harder to mount on a lathe, and they produce a

shorter tool life when they are lathe-turned. As another

example, it may be more appropriate for some parts to start with

a casting rather than raw stock. Determining this requires

examining and evaluating the machining processes necessary to

produce the part (see Section 5.1.3).

One way that stock selection could be partially automated

is as follows. A human sitting at a computer terminal could

examine an engineering drawing or a computer graphics

representation of a part to be manufactured, and give the

computer information on the dimensions and other parameters

necessary for a suitable piece of stock. The computer could then

examine a database containing information on what pieces of stock

are available, and generate a retrieval order for the smallest

suitable piece.

Process Selection

Automatically selecting the appropriate processes to

manufacture a part requires knowledge about the capabilities of

each process. It also requires the ability to

—

1. identify the machinable surfaces on the part and on each

stage the workpiece passes though;

2. represent the changes made to the workpiece caused by each

machining operation;

3. represent and reason about special features of the part, such

as chamfers, threads, and tolerances; and

Section 5 52

4. identify relevant geometrical relationships between each

machinable surface and the rest of the part.

The geometrical relationships mentioned in the fourth item above

can affect in what kinds of processes can be used, the order in

which the processes must be performed (see Section 5.1.7), or

whether the surface can even be machined. For example, it is

impossible to machine a hollow cube with no external opening!

As discussed in Section 5.2, sophisticated techniques for

representing and reasoning about the workpiece will be required

if process selection is to be fully automated. However, it

appears feasible to use AI techniques to create an interactive

computer system to do process selection for certain kinds of

parts. This is discussed further in Section 6.

Let P be a part, and A be a machinable surface of P.

Process selection may produce several processes capable of

producing A. Some of these processes

,

however

,

may not be

appropriate for P . The set of eligible processes for A can be

cut down by the activities described in Sections 5.1.4 through

5.1.8 below

.

Selection of Machine Tool and Cutting Tool Types

Selecting appropriate types of machine tools and cutting

tools to perform a given process should be relatively

straightforward, given the requirements for that process. For

example, one might have a database containing information on the

capabilities of each type of machine tool available in the

factory. The database would be searched to determine which

machine tools, if any, could perform the process if suitable

Section 5 53

cutting tools were available. For each eligible machine tool, a

second database search could then be done to determine whether a

satisfactory cutting tool is available.

It should be noted that two different machine tools

performing the same process may not be able to provide the same

tolerance. The current practice in industry is to pretend that

if two machine tools can perform the same process, they can both

do it equally well. For simplicity, it is probably best to do

the same thing here, at least initially.

Fixture Selection

Fixture selection is a very complex task. It involves

decisions such as where to place the fixtures on the workpiece,

what kinds of fixtures are adequate to hold the workpiece firmly

without damaging it, how to orient the workpiece, whether a

fixture and a workpiece fit each other, and whether and how to

design a special fixture to hold the workpiece.

Just how to automate fixture selection is unclear at this

point. It is probably best, in the initial stages of the

project, to do it by hand. If automation is to be considered

later on, one way to simplify the problem would be to restrict

the AMRF to use a standard set of fixtures. Fixture selection

could be done by hand if a special fixture is needed.

Gripper Selection

Selecting a gripper with which the robot arm can hold the

workpiece is a complex task involving problems similar to those

of fixture selection. Again, it may be best to do this by hand

at first. One way to simplify this problem for future automation

Section 5 54

would be to use pallets to hold the workpieces. Then the same

grippers could be used to hold all parts.

Process Sequencing

What process orderings are possible in making a part are

constrained to some extent by the nature of the processes and the

relationships among the machined surfaces. For example, drilling

must be done before reaming. Furthermore, certain sequences of

processes may produce workpieces which are difficult or

impossible to fixture

,

or which do not have the shape or

orientation necessary to be picked up without damaging them.

These sequences should be eliminated.

Even after applying the above constraints, there may be

more than one suitable sequence of processes. To choose which

sequence to use, one might be interested in choosing the one

having optimal time, cost, or profit.

One difficulty with approaching process sequencing as an

optimization problem is that it may be difficult to obtain all of

the necessary information. For example, one might have to figure

out how long it might take to mount a workpiece on a complicated

fixture

.

Whether an optimal process sequence should be determined

by the process planning system or left up to the production

planning system will depend on how flexible the AMRF is expected

to be. Additional flexibility— for example, the ability to

choose various sequences dynamically, depending on the work

load--will require a more complex system.

Section 5 55

To avoid getting bogged down in complex problems

beginning of the project, it might be best simply to

sequence of processes arbitrarily, or perhaps to choose

minimize the number of time-consuming activities

f ixturing.

at the

choose a

them to

such as

Selection of Work Stations .

This section deals with selecting the actual physical

work station to be used for a process, rather than the type of

machine tool (as discussed in Section 5.1.4). This should

probably not be done until completion of the activities described

in Sections 5.1.3 through 5.1.6, and some of the activities

described in Section 5.1.7.

Activities such as machine tool selection and fixture

selection are used to eliminate processes which cannot be

performed. For example, let M be a machinable surface on a part,

and P, Q, R, and S be processes which can be used to produce M.

During machine tool and fixture selection (Sections 5.1.4 and

5.1.5), P may be eliminated because no machine tool in the

factory can perform P, and Q may be eliminated because no there

is no good way to fixture the workpiece to perform Q.

Work station selection is used to decide which is the

most appropriate of several possible sets of processes for

creating a part. For example, suppose process R can be done at

work station B, and S can be done at work station C. If all

other processes for manufacturing the part are to be done at work

station B, then it is more efficient to select process R. Trying

to make this kind of decision before determining that R and S are

Section 5 56

possible to perform would merely complicate the process planning.

Given a set of processes to be performed, it is fairly

straightforward conceptually to select work stations to perform

them. However, it might require a fair amount of computation.

One possible approach would be to do a table lookup to

determine which kinds of work stations are available for each

process. Selecting a combination of these work stations for

manufacturing the entire part could then be done. One way to do

this would be to make selections which minimize the number of

transfers of the part among different work stations. Making such

a selection would be related to NP-complete problems such as the

set covering problem or the traveling salesman problem [Aho et

al. 1976].

Machining Parameter Determination

The machining parameters to be determined for each

process consist of the feed rate, cutting speed, and sometimes

the depth of cut. Determining these parameters is a nonlinear

optimization problem involving various equations relating the

parameters to factors such as tool life. This can be solved

using operations research techniques to optimize for time, cost,

or profit, as desired. For simplicity, some existing systems

choose the machining parameters by a table lookup rather than

trying to find an optimum.

For flexibility, it may be desirable for the machining

parameters to be determined by interacting with the process

planning system. For example, it may be appropriate to slow the

machine tool down if the factory has a low work load. One way to

- Section 5 57

achieve this flexibility would be to let the process planning

system decide what to optimize (cost, time, or profit).

Tool Trajectory Determination

Determining the tool trajectories can be done using

mathematical techniques, but it first requires defining the

boundaries of the volume of material to be removed. If these

boundaries touch any other machined surfaces, this may restrict

the possible angles of approach of the cutting tool. Determining

such relationships and restrictions is a complex geometrical

problem, which should initially be solved by hand.

Creation of Instructions

Creation of instructions to the NC machine tool should be

fairly straightforward once the tool trajectories and machine

tool parameters are known. Indeed, systems (such as the Autotrol

in the NBS machine shop) are already being marketed for this kind

of task.

Creation of instructions for the robot arm, robot cart,

and to the various levels of the factory (work station, cell,

etc.), appears more complicated at this point. Until the

technology for interfacing and communicating automatically with

these levels has been further developed, it will be hard to make

recommendations for these tasks.

Verification of the Process Plan

In an error-free process planning system, verification

would be unnecessary. However, errors are bound to occur, and it

will be necessary to have ways for a human to examine the process

Section 5 58

plan and verify that it is correct. For example, one might have

a graphics display terminal on which the processes could be

simulated, to see if they result in the desired part.

^.2. Geometric Modelling Requirements

If the process planning is to be done automatically, the

part design information will have to be presented or translated

into a computer representation suitable for manipulation by the

process planning system. In a fully automated system, such a

representation would have to be adequate to allow the system to

—

1 . determine whether a part can be physically produced from a

given piece of stock. This requires not only deciding

whether the part will physically fit within a region of space

having the dimensions of the piece of stock, but also

deciding whether it can be oriented correctly (according to

some heuristic criterion of correctness) within this region

of space. For example, see Figure 5.2.

2. determine how much material must be removed from a piece of

stock to produce a part.

3. decide whether rectangular or cylindrical stock is more

appropriate, whether a piece of scrap can be used, or whether

to use a casting.

4. identify the machinable surfaces of the part.

5. identify intermediate surfaces to be machined on the

workpiece (i.e., surfaces which may not appear in the final

part)

.

6. determine reference surfaces (i.e., surfaces to be used for

inspecting the part).

Section 5 59

7. decide what processes can be used to produce a given machined

surface

.

8. match machining operations to volumes of material to be

removed from the workpiece.

9. check adjacency of geometric surfaces (e.g., to decide

whether a process will affect surfaces other than the one for

which it was selected).

8. handle special features, such as threads, chamfers, and

tolerance information.

9. decide whether two objects fit each other correctly (for

example, whether a fixture or a gripper fits a workpiece).

10. check interference of geometric parts (e.g., to decide

whether a tool trajectory for a process interferes with a

fixture, or with portions of the workpiece that are not

supposed to be affected by the process).

Several representations for three dimensional objects are

currently the subject of experimentation. Examples of such

representations are

—

1. wire-frame representation [Nagel et al. 1980] [Requicha

1980], in which an object is represented by the set of edges

bounding it;

2. boundary surface representation [Eastman et al. 1779]

[Requicha 1980], in which an object is represented by the set

of geometric surfaces bounding it;

3. constructive solid geometry (CSG) representation [Requicha

1980] [Voelcker et al. 1978], in which an object is

represented as a Boolean combination of simple primitive

objects such as blocks or cylinders.

Section 5 60

For process planning. it is likely that several such

representations will have to be used simultaneously. For

example, boundary surface representation might turn out to be be

best for identifying machinable surfaces. But for identifying

the volume of material to be removed by a process, CSG might be

more appropriate. As an added complication, the volume covered

by a tool trajectory might be most appropriately represented as a

swept volume [Requicha 1980] [Eastman et al. 1977], which is the

volume generated by sweeping an object through space.

Several computer aided design systems are under

development, using various sorts of computer representations of

objects [Requicha 1980]. At present, none of these is adequate

for totally automated process selection. For example, none of

them allows the requisite handling of tolerances and special

features

.

The Initial Graphics Exchange Specification (IGES) [Nagel

et al. 1980] is a standard for representing descriptions of

parts. It was devised for use in transferring such descriptions

from one computer system to another. The representation used in

IGES is a wire-frame representation. Since this representation

is in some cases ambiguous [Requicha et al. 1979], it is not

adequate for transmitting information about objects which are

represented in, say, CSG or boundary surface representation.

Since a boundary surface representation of an object can

be thought of as an extention of a wire-frame representation of

the object, it might be fairly straightforward to extend IGES to

handle boundary surface representations. However, handling other

representations may be more difficult. For example, although

Section 5 61

there are procedures for converting a CSG representation to

boundary surface representation [Voelcker et al. 1980],

procedures have been developed for the inverse conversion.

a

no

62

6. RECOMMENDATIONS FOR PROCESS SELECTION

In this section, recommendations are made for the design

of an interactive process selection system for the AMRF which

uses expert system techniques from artificial intelligence.

Section 6.1 is a brief description of the basic features of

existing process selection systems. Section 6.2 contains the

recommendations for the process selection system. Section 6.3 is

a scenario for how such a system might operate.

Existing Systems

In several existing computer-aided process planning

systems, process selection works as follows. A Group Technology

(GT) code [Chang 1981] is used to classify a part as being in a

family of similar parts. When a process plan for a part is

desired, a human user enters the GT code for the part into the

system, and the system retrieves a process plan which was

previously used for some part in this family. The process plan

is then modified by the user to produce a plan for the part.

Examples of such systems are CAPP [Holtz 1978] and MIAPP [Hewgley

et al. 1979].

Such systems are quite useful in industry, as they allow

process plans to be made very quickly. However, if process

planning is to be automated more fully, it will be necessary for

the computer system to have more complete information about the

part than just a GT code. In particular, detailed information

must be available about each surface to be machined.

Section 6 63

A few process planning systems have been developed

experimentally which use as input a represention of each of the

surfaces to be machined. Some of them are briefly described

below.

CPPP [Mann et al. 1977] [Dunn et al. 1981] is a system

which does process selection and sequencing for rotational

(lathe-turned) parts. To use CPPP, a user gives CPPP the name of

a "part family" containing the desired part, and for each surface

to be machined, gives CPPP a code describing the surface.

The part family name is used to retrieve a process model,

which is a simple computer program written in a language designed

for that purpose. The process model must have been previously

written and debugged by a human process planner, and must be

general enough to handle every part in the (arbitrarily defined)

family. Because of the restrictions of the process planning

language, the process model amounts to a decision tree in which

information about the surfaces is used to select and sequence

processes

.

APPAS [Wysk 1977] is a system which does process

selection for both rotational and prismoidal parts. To use

APPAS, the user enters for each surface a code describing the

surface. The system then uses knowledge of the capabilities of

various processes to select a process for each surface. Since

APPAS is restricted to rotational and prismoidal components, it

need not consider the geometrical relationships which may occur

among the surfaces. Thus APPAS selects processes for each

surface independently.

Section 6 64

CADCAM [Chang 1980] [Chang et al. 1981] is an extention

of APPAS. The main features of this extention are a graphics

interface which allows the user to design a part interactively,

and an encoding of the process planning decision logic into

decision tables.

6,2, The Recommended System

Interactive Process Selection

It is obvious that the AMRF process selection system must

make use of descriptions of the surfaces of a part, as do several

of the systems described in Section 6.1. However, the AMRF

system must be capable of doing process planning for a wider

class of parts than just rotational or prismoidal parts. This

will require information about the relationships among the

surfaces, as well as descriptions of the surfaces themselves.

Ideally, the system would get the information it needs

from examining a detailed representation of the part (as

discussed in Sections 5.1 and 5.2). However, this cannot be done

at present: it is not known what representations might be used,

or how the system could examine these representations to get the

necessary information. One way to avoid this problem is to have

a human user provide whatever information might be necessary.

Such information could include descriptions of the machinable

surfaces, their orientation relative to other surfaces, what

tolerances are required, which surfaces are adjacent, what

special features are present, and so forth.

Not all of the above information will be necessary for

every surface of a part, and it may not be clear at the outset

Section 6 65

what information will be required for each surface. If the user

is required to enter a complete description of the part before

the process selection system starts operating, it may turn out

that some information is unnecessary and other information is

missing. Therefore, it would be better to have an interactive

system which would ask the user for information as it is needed.

Another advantage of this approach is that the system

could gradually be interfaced with other parts of the process

planning system as they are developed. For example, suppose it

is decided that AMRF should make use of a GT code describing the

parts to be manufactured. Then the process planning system could

be instructed that before asking the user each of its questions,

it should first check to see if the answer could be deduced from

the GT code.

To continue the example, suppose a usable computer

representation for machined parts is developed later in the AMRF

project. If it becomes obvious how to use this representation to

decide what the machinable surfaces are, a module could be

written to examine the part representation and give this

information to the process selection system. Modules to answer

other questions could gradually be added to automate the process

selection as much as possible.

^.^.2. ^ Techniques for Knowledge Representation

At present, it is not obvious what all of the factors are

that might influence the process selection and sequencing for a

particular part, or what effects these factors might have. It

may be necessary to make extensive modifications and additions to

Section 6 66

the decision logic as the system is developed. The system may

need decision-making knowledge which can only be gained by

talking to a human expert, as was the case with medical diagnosis

systems such as MYCIN [Davis et al. 1977], CASNET [Weiss et al.

1978], or MDX [Chandrasekaran et al. 1979]. For these reasons,

it appears best to represent the problem-solving knowledge using

techniques similar to those used by designers of expert systems

in Al. These techniques could be used to represent knowledge

about what information to request, the order in which to request

it, and how to use it for process selection.

If implemented correctly, such techniques would allow

pieces of knowledge easily to be added, changed, or removed from

the system without having to modify other pieces of the system to

accomodate each change. Such an extensible system would have

distinct advantages. Initially, knowledge could be encoded into

the system to allow it to do process selection on some simple

class of parts (e.g., lathe-turned parts). This would give the

workers on the AMRF project some experience with the problems

involved with automated process planning. Once working, the

system could have its knowledge augmented to allow it to handle

other parts.

One way to represent the decision-making knowledge would

be to use production rules, as was done in MYCIN [Davis et al.

1977]. However, different types of decision-making knowledge

might be better represented in other ways (for example, semantic

nets, frames, or actual computer code). Thus it might be

worthwhile to allow for interactions between sources of knowledge

encoded in arbitrarily different ways, as was done in systems

Section 6 67

such as MDX [Chandrasekaran et al. 1978] and HEARSAY-II [Erman et

al. 1980].

Summary

In summary, the recommendations for a process selection

system for AMRF are as follows.

1. The system should be interactive. It should ask the user

questions about the part to be manufactured, and use the

answers to these questions to do process selection. This

would allow the system to be interfaced to the other parts of

the process planning system as they are developed.

2. The knowledge base for the system should be organized using

Al techniques. This would allow for the decision-making

knowledge to be modified or extended easily.

How these recommendations might be used to design a process

selection system is illustrated in Section 6.3.

^.3^. Scenario for an Automated Process Selection System

This section is a scenario describing the structure and

operation of a hypothetical process selection system. The system

is interactive, and uses knowledge representation and problem

solving techniques from Al
,

as suggested in Section 6.2. Section

6.3.1 describes the representation the system uses for machinable

surfaces and machine tool processes. Section 6.3.2 contains an

annotated dialog between the system and a user.

Section 6 68

^.3,. 2* Representation of Machinable Surfaces

For each type of machinable surface in our hypothetical

system (as well as for certain other geometric entities), there

is an uninstantiated (i.e., empty) frame representing the

possible characteristics of that type of surface. Whenever a

user specifies a new surface to be machined, frame corresponding

to that type of surface is copied, and the copy is used to

represent the surface. During the interaction between the user

and the system, the slots of this frame are filled in with values

describing the surface.

Below are frames for two types of machinable surfaces:

holes and chamfers.

Frame type: hole
name: (a unique identifier for the hole, to be filled in
when the frame is copied)

slot name possible values comments

bottom conical. or fla
length a real number
pos-length-tol a real number
neg-length-tol a real number
diameter a real number
pos-diam-tol a real number
neg-diam-tol a real number
on-surface a flat surface

x-loc a real number
y-loc a real number
z-loc a real number
loc-tol a real number

x-angle a real number
z-angle a real number
surface-finish a real number
straightness a real number
roundness a real number
parallelism a real number

default is conical
length of the hole
pos. tolerance for length
neg. tolerance for length
diameter of the hole
pos. tolerance for diam.
neg. tolerance for diam.

name the surface on which the
hole is located
X coordinate of location
y coordinate of location
z coordinate of location
max acceptable distance

from location
angle of tilt to x axis
angle of tilt to z axis
max acceptable roughness
max acceptable deviation
max acceptable deviation
max acceptable deviation

Section 6 69

frame type: chamfer
name: (a unique identifier for the chamfer, to be filled
in when the frame is copied)

slot name possible values comments

hole a name of a hole the hole on which the
chamfer appears

type simple linear. different types
inner fillet,
outer fillet

of chamfers

radius real

For each type of surface, there is a list of processes

capable of creating the surface. For each process in this list,

there is a frame specifying the restrictions on the capabilities

of the process, and the preconditions that have to be satisfied

before the process can be performed.

Below are frames for three processes capable of creating

a hole: twist drilling, spade drilling, and rough boring. The

system contains similar frames for other hole-creating processes,

such as finish boring, rough reaming, and finish reaming.

In the frames below, the hole to be created is referred

to by the variable name H. Each of the processes requires the

existence of other machined surfaces or geometrical entities.

These are referred to by other variable names, such as C, S, and

H'. The data used in the process restrictions were taken from

Chang [1980], pp. 164-5.

Section 6 70

frame for a process to create a hole H

process name: twist-drill

list of restrictions:
1. diameter(H) > .063
COMMENT: diameter (H) refers to the value in the diameter
slot of the frame for the hole H. The meanings of the
other functions below are analogous,

2. diameter(H) < 2

3. length(H) < 12 * diameter(H)
4. pos-diam-tol (H) > (. OOY^diameter (H))

** 0.5 + .003
5. neg-diam-tol (H) > (. OOT^diameter (H))

** 0.5
6. loc-tol(H) > .008
7. straightness (H) >

(.0005*length(H)/diameter(H)) 3 + .002
8. parallelism(H) >

(.001 *length(H)/diameter (H)) ** 3 + .003
9. roundness(H) > .004

10.

surface-finish (H) > 100

list of preconditions:
1. either one of the following:

la. list of preconditions:
type (on-surfaceH)) = flat-surface
x-angle(on-surfaceH)) = x-angle(H)
z-angle (on-surfaceH)) = z-angle(H)

lb. spot-face F
hole(F) = H

2. hole-workspace C

x-location (C) = x location(H)
y-location (C) = y location(H)
z-location(C) = z location(H)
x-angle(C) = x-angle(H)
z-angle(C) r z-angle(H)

Section 6 71

frame for a process to create a hole H

process name: spade-drill

list of restrictions:
1. diameter(H) > 0.75
2. diameter(H) < 4

3. length(H) < H * diameter(H)
4. pos-diam-tol (H) > (. 005*diameter (H)) ** 0.5 + .003
5. neg-diam-tol (H) > (. 004*diameter (H))

** 0.5 + .025
6. loc-tol(H) > .008
7. straightness (H) >

(.0004»length(H)/diameter(H)) »» 3 + .002
8. parallelism(H) >

(.0008*length(H)/diameter (H)) ** 3 + .003
9. roundness(H) > .004

10.

surface-finish (H) > 100

list of preconditions:
1 . one of

flat-surface S
x-angle(S) = x-angle(H)
z-angle(S) = z-angle(H)

spot-face F
hole(F) = H

2. hole-workspace C

x-location(C) = x-location (H)
y-location(C) = y-location (H)
z-location (C) = z-location (H)
x-angle(C) = x-angle(H)
z-angle(C) = z-angle(H)

Section 6 72

frame for a process to create a hole H

process name: rough-bore

list of restrictions

:

1

.

diameter(H) > 0.375
2. diameter(H) < 10
3. length(H) < 10 » d iameter (H

)

4. pos-diam-tol (H) > .002
5. neg-diam-tol (H) > .002
6. loc-toKH) > .0001
7. straightness (H) > .0003
8. parallelism(H) > . 0005
9. roundness(H) > .0003

10. surface-finish (H) > 8

list of restrictions

:

1

.

hole H'
COMMENT: H’ must be at the same location as H,
but the tolerance requirements for H' are
differen t from those for H.

length (H ’

)

= length(H)
x-loc(H’

)

= x-loc(H)
y-loc (H ’) = y-loc(H)
z-loc (H '

)

= z-loc(H)
x-angle (H

'

) = x-angle(H)
z-angle (H

'

) = z-angle(H)
(at this point, the frame includes
various restrictions on the diameter,
diametr

i

c tolerances, locational tolerance,
surface finish, straightness.
roundnes s, and parallelism of H')

2. hole-workspace C

(space in which to do boring)
x-location (C) = x-location (H

)

y-location (C) = y-location (H

)

z-location (C) = z-location (H)
x-angle (C) = x-angle(H)
z-angle (C) = z-angle(H)

In the system, the frames for the processes are used in a

manner similar to the production rules for STRIPS (Section 2.3.2)

or MYCIN (Section 4.1).

A Sample Dialog

The system has a graphics display terminal whose screen

is divided into three parts: a display of the workpiece, a

display of the surface being currently described by the user, and

Section 6 73

a space in which the dialog between the user and the system is

typed

.

At the top level, the control structure for the system is

a simple loop:

LOOP
s := ask-user-for-surface ()

IF s is a command rather than a surface
THEN execute s

ELSE find-way-to-produce (s

)

REPEAT

If we list the process frames for a surface, the process

frames relevant to the preconditions for these frames, and so

forth, the resultant structure is an AND/OR graph similar to that

of MYCIN (see Figure 4.2). The subroutine "find-way-to-produce"

is similar in structure to the "find-value-of " subroutine of

MYCIN (see Figure 4.1). It starts at the top of this graph and

calls itself recursively to do a top-down, depth-first search

through the graph. Searching this graph will yield a sequence of

processes capable of generating the surface, if such a sequence

exists

.

Suppose a user is designing a workpiece which has a flat

horizontal surface with a hole in it. Suppose the flat surface

has already been handled by the system, and the user decides to

enter the information about the hole. Then the dialog between

the system and the user might proceed as outlined in the

following paragraphs.

SYSTEM: "Enter next surface."

USER: "hole"

Section 6 74

The system retrieves and copies the frame for holes. The

new frame, which represents the hole to be produced, is given the

name HOLE-1. Using default values for various slots in the

frame, the system draws a picture of HOLE-1 in the "current

surface" portion of the screen.

SYSTEM: "The hole is called HOLE-1."

"find-way-to-produce (HOLE-1) " is then called. This

causes the system to retrieve the frames for all processes

capable of creating a hole, and trying to find one whose

restrictions are satisfied by HOLE-1. The first process frame

retrieved is the "twist-drill" frame. The system checks this

frame's restrictions, one by one, to see if they are satisfied.

The first restriction is

diameter (HOLE-1) > .063.

Whenever the system has no other way of finding out a piece of

information, it asks the user.

SYSTEM: "Enter the diameter of HOLE-1."

USER: "1.0"

The value "1" is entered in the "diameter" slot for HOLE-1.

Since this changes one of the default values used in the

pictorial display of the hole, the picture is redrawn.

Restriction 1 is satisfied, so the system checks

restriction 2:

diameter (HOLE-1) < 2.

This restriction is also satisfied, so the system checks

restriction 3:

length(H0LE-1) < 12 » diameter (HOLE-1)

.

For this, the system needs to know the hole's length.

Section 6 75

SYSTEM: "Enter the length of HOLE-1."

USER: "1"

Again, the new information is put into the frame for HOLE-1, and

the displayed picture of HOLE-1 is redrawn.

Restriction 3 being satisfied, the system checks

restriction 4:

pos-diam-tol (HOLE-1) > (. 007*diameter (HOLE-1))
** 0.5 + .003.

SYSTEM: "Enter the positive tolerance of HOLE-1."

USER: "pos-diam-tol = neg-diam-tol = .005" (The user can

enter several items at once if he desires, or may even enter

arbitrary commands to the system.

)

Restriction 4 is not satisfied, so HOLE-1 cannot be

created by twist drilling. Thus the system retrieves the frame

for another hole-making process: "spade-drill". Using the

information already in the frame for HOLE-1, the system

ascertains that although the first three restrictions for spade

drilling can be satisfied, the fourth one cannot. Thus spade

drilling will not work, either.

Continuing its effort to find a usable process, the

system retrieves other hole-making process frames, one by one.

For each one, it asks whatever questions are necessary to

establish whether their restrictions can be met.

The first frame for which all restrictions can be met is

the "rough-bore" frame. This means that rough boring can be used

to produce HOLE-1, provided that the frame’s preconditions are

met. As shown in the "rough-bore" frame earlier, there are two

preconditions

:

1. A hole (H’ in the preconditions) must already exist.

Section 6 76

However, the tolerances for H' are not as close as those for

HOLE-1

.

2. There must be sufficient open space (hole-workspace C in the

preconditions) around and above the hole for boring to be

done

.

Each of these preconditions is set up as a subgoal.

The system works on the first precondition first. Since

no hole has yet been created in the workpiece, H* does not match

any existing hole. Therefore, the system creates a new hole

frame, HOLE-2, and assigns H’ = HOLE-2.

"find-way-to-produce (HOLE-2) " is now called. The system

starts retrieving hole-making process frames and asking questions

as before, to determine whether there is a process capable of

producing HOLE-2. The slot values for HOLE-2 are not determined

by asking questions of the user, but instead are filled in as

needed using the information specified in the preconditions for

the "rough-bore" process. Since this information refers to slot

values in HOLE-1
,
and since some of these values may not yet be

known, the user may be asked questions about HOLE-1.

This time, the system determines that HOLE-2 satisfies

the restrictions of the "twist-drill" process, so it starts

checking the preconditions for twist drilling.

As shown in the "twist-drill" frame earlier, the first

precondition is either (a) that the surface on which HOLE-2 is

located be oriented correctly for HOLE-2 to be drilled, or (b)

that there be a spot face F for HOLE-2, The surface on which

HOLE-2 is located, and its location and orientation relative to

this surface are unknown. However, these data can be determined

- Section 6 77

from the corresponding data for HOLE-1. The system now gets this

information from the user. By checking the frame it already has

for the surface on which HOLE-2 is located, the system ascertains

that the surface is oriented correctly for HOLE-2 to be drilled.

Since the orientation and location of HOLE-1 are now

known, the system now moves HOLE-1 from its position in the

"current surface" portion of the screen to its correct location

on the workpiece.

"twist-drill" also requires sufficient space (hole-

workspace C in the preconditions) for drilling to be done. The

list of applicable processes for creating a hole-workspace

contains a process called "ask-about-hole-workspace" . The list

of restrictions for this process is empty, so the system checks

the list of preconditions. In place of a precondition list, the

process contains a call to a subroutine which displays an outline

of the required space on the screen, and asks the user if this

space intersects the workpiece. The user replies that everything

is OK, so this subgoal is satisfied.

The only remaining subgoal is the hole-workspace for the

"rough-bore" process. Since this space occupies the same

physical volume as the hole-workspace for the "twist-drill"

process, the system ascertains that the subgoal is satisfied

without having to ask the user any more questions.

At this point, the problem of producing HOLE-1 is solved.

The system continues interacting with the user until it has

determined how to produce every machined surface on the part to

be manufactured, and then it prints out a list of the processes

to be used.

78

ACKNOWLEDGEMENTS

In the preparation of the report, the willingness of the

following people to discuss problems, provide source material,

and read rough drafts was quite helpful: Howard Bloom, Ted

Chang, Bill Gevarter, and Ted Hopp.

Several of the figures in this paper are reprinted or

adapted from other sources. Credits are as follows.

1. Figures 2.9 and 2.12: Winston, Artificial Intelligence , c.

1977, Addison-Wesley
,
Reading, Mass. Figures 3-15 and 3-19

used with permission.

2. Figure 4.1: Artificial Intelligence , Vol. 8, c. 1977, North-

Holland Publishing Co. Material used with permission.

3. Figures 2.14, 2.15, 2.16, 4.8, and 4.9, and the quote on pp.

17-18: Nilsson, Principles of Artificial Inell igence c.

1980, Tioga Publishing Co. Material used with permission.

4. Figures 4.3 and 4.4: Artificial Intelligence , Vol. 11, c,

1978, North-Holland Publishing Co. Material used with

permission

.

5. Figure 4.5, 4.6, and 4.7, and the Table on p. 41: and Table

II: ACM Computing Surveys
,

Vol. 12, c. 1980, Association for

Computing Machinery. Material used with permission.

6. Figure 4.10: Pr oc. Sixth Internet. Joint Conf . Artif

.

Intelligence , c. 1979, International Joint Conference on

Artificial Intelligence. Material used with permission.

1

79

REFERENCES

Aho, A. V.; Hopcroft, J. E.
;
and Ullman, J. D. The Design and

Analysis of Computer Algorithms. Addison-Wesley~i Reading

,

MA, 1976.

Bobrow, D. G. and Winograd, T. "An Overview of KRL
,

a Knowledge
Representation Language." Cognitive Science 1:1 (1977), 3-^6.

Boothroyd, G. Fundamentals of Metal Machining and Machine Tools .

Scripts, Washington, DC, 1975.

Brachman
,

R. "On the Epistemological Status of Semantic
Networks." In Associative Networks i Representation and Use
of Knowledge by Computer

,
N. V. Findler, Ed. Academic Press,

T579, pp. 3-5'^

Chandrasekaran
,

B.
;
Gomez, F.

;
Mittal, S.

;
and Smith, J. "An

Approach to Medical Diagnosis Based on Conceptual
Structures." Proc Sixth Internet . Joint Conf . Artif .

Intelligence , Tokyo (Aug . 1979),

Chang, T.-C. Interfacing CAD and CAM - £ Study of Hole Design .

M.S. Thesis, Virginia Polytechnic Institute, 198^~i

Chang, T.-C. and Wysk, R. A. "An Integrated CAD/Automated
Process Planning System." AIIE Transactions 13:3 (Sept. 1981)

Chang, T.-C. "Group Technology and its Applications: a

Tutorial." Tech. Report., Industrial Systems Division,
National Bureau of Standards, in preparation (1981).

Chilausky, R
. ;

Jacobsen, B.; and Michalski, R. S. "An
Application of Variable-Valued Logic to Inductive Learning of
Plant Disease Diagnostic Rules." Proc . Sixth Annual Internat .

Symp . Multi -Valued Logic , Utah (1976).

Clowes, M. "On Seeing Things." Artificial Intelligence 2:1

(1971), 79-116.

Davis, R.
;
Buchanan, B.

;
and Shortliffe, E. "Production Rules as

a Representation for a Knowledge-Based Consultation Program."
Artificial Intelligence 8:1 (1977), 15-45.

Dunn, M. S. Jr.; Bertelsen, J. D.; Rothauser, C. H.; Strickland,
W. S.

;
and Milsop, A. C. "Implementation of Computerized

Production Process Planning." Report R81 -945220-1 4 ,
United

Technologies Research Center, East Hartford, CT (June 1981).

Eastman, C. and Henrion, M. "GLIDE: a Language for Design
Information Systems." ACM Computer Graphics 11:2 (July 1977),
24-33.

References 80

Erman, L. D.
;
Hayes-Roth, F.; Lesser, V. R.; and Reddy, D. R.

"The Hearsay-II Speech-Understanding System: Integrating
Knowledge to Resolve Uncertainty." Computing Surveys 12:2
(June 1980), 213-253.

Fahlman, S. E. NETL : A System for Representing and Using
Real -World Knowledge . MIT Press, Cambridge, MA, 1979.

Fikes, R. E. and Nilsson, N. J. "STRIPS: a New Approach to the
Application of Theorem Proving to Problem Solving."
Artificial Intelligence 2:3/^ (1971), 189-208.

Feigenbaum, E.
;
Buchanan, G.; and Lederberg, J. "Generality and

Problem Solving: a Case Study Using the DENDRAL Program." In
Machine Intelligence 6, Meltzer, B. and Michie, D., Eds.
Edinburgh University Fress, Edinburgh, 1971, pp. 165-190.

Feigenbaum, E. A. "Expert Systems in the 1980s." Unpublished.
Computer Science Dept., Stanford Univ.

,
Stanford, CA (1980).

Goldstein, I. and Papert, S. "Artificial Intelligence, Language
and the Study of Knowledge." Cognitive Science 1:1 (1977),
84-123.

Hart, P. E.
;
Duda, R. 0.; and Einaudi, M. T. "A Computer-Based

Consultation System for Mineral Exploration." Unpublished
report, SRI International, Menlo Park, CA (1978).

Hewgley, R. E. Jr. and Prewett, H. P. Jr. "Computer Aided
Process Planning at the Oak Ridge Y-12 Plant: a Pilot
Project." Report Y/DA-8297, Union Carbide, Oak Ridge Y-12
Plant, Oak Ridge, TN (April 1979).

Hewitt, C. "Description and Theoretical Analysis (Using
Schemata) of PLANNER: a Language for Proving Theorems and
Manipulating Models in a Robot." Tech. Rep. 258, MIT AI
Laboratory (1972).

Holtz, R. D. "GT and CAPP Cut Work-in-Progress Time 80^6."
Assembly Engineering 21:7 (July 1978), 16-19.

Huffman, D. "Impossible Objects as Nonsense Sentences." In
Machine Intelligence 6̂

,
Meltzer, B. and Michie, D., Eds.

Edinburgh University Press, Edinburgh, 1971, pp. 295-323.

Kulikowski, C. Personal communication (1981).

Mann, W. S.; Dunn, M. S.
;
and Pflederer, S. J. "Computerized

Production Process Planning." Report R77-942625-1 4 ,
United

Technologies Research Center (Nov. 1977).

Martin, N.; Friedland, P.; King, J.; and Stefik, M. J.

"Knowledge-Base Management for Experiment Planning in
Molecular Genetics." Proc. Fifth Internet. Joint Conf. Artif.
Intell . (1977), 882-MtT

References 81

McCracken, D. L. "Representation and Efficiency in a Production
System for Speech Understanding." Proc, Sixth Internat. Joint
Conf . Artif . Intell . (1979), 556-5FT

McDermott, D. "The PROLOG Phenomenon." SIGART Newsletter

Michie, D. "Knowledge-Based Systems." Tech. Rep. UIUCDCS-
R-80-1001, Computer Sci. Dept., Univ. of 111., Urbana, IL
61801 (Jan. 1980). No. 72 (July 1980), 16-20.

Minsky, M. "A Framework for Representing Knowledge." In The
Psychology of Computer Vision, P. H. Winston, Ed. McGraw-
Hill, New York, 1975, pp. 211-277.

Myolopoulos, J. "An Overview of Knowledge Representation." Proc.
Workshop on Data Abstraction , Databases , and Conceptual
Modeling (June 1 980) ,

5-12.

Nagel, R. N.; Braithwaite, W. W.
;

and Kennicot, P. R. "Initial
Graphics Exchange Specif iciation IGES Version 1.0." Report
NBSIR 80-1978 (R), National Bureau of Standards,
Gaithersburg, MD (March 1980).

Nii, H. P. and Aiello, N. "AGE (Attempt to Generalize): a

Knowledge-Based Program for Building Knowledge-Based
Programs." Proc. Sixth internat. Joint Conf. Artif. Intell.
(1979), 645^^.

Nilsson, N. J. Problem-Solving Methods in Artificial
Intelligence . McGraw-Hill, New York"j 1971.

Nilsson, N. J. Principles of Artificial Intelligence. Tioga,
Palo Alto, CA, 1980.

Osborn, J.
;
Fagan, L.; Fallat, R.

;
McClung, D.; and Mitchell, R.

"Managing the Data from Respiratory Measurements." Medical
instrumentation 13:6 (Nov. 1979).

Phillips, R. H. A Computerized Process Planning System Based on
Component Classification and Coding . Ph.D. Thesis, Purdue
University

, 1978.

Pople, H. E. "The Formation of Composite Hypotheses in
Diagnostic Problem Solving: an Exercise in Synthetic
Reasoning" Sect. 1-4 Proc. Fifth Internat. Joint Conf. Artif.
Intell . (1977), 1030^TO7.

Reggia, J. A. and Perricone, B. T. "Knowledge-Based Decision
Support Systems: Development Through High-Level Languages."
Twentieth Ann. Tech. Conf., Wash. D.C. Chapter, ACM, College
Park, MD (June IWT). rT98lTrT5-'82.

Requicha, A. A. G. and Voelcker, H. B. "Geometric Modelling of
Mechanical Parts and Machining Processes." Proc . Compcontrol
* 79 ,

Sopron
,
Hungary (Nov. 1979).

References 82

Requicha, A. A. G. ’’Representations for Rigid Solids: Theory,
Methods, and Systems.” Computing Surveys 12:4 (Dec. 1980),
437-464.

Schank, R. C. Conceptual Information Processing. North-Holland

,

New York, 1975.

Schubert, L. K. ’’Extending the Expressive Power of Semantic
Nets." Artificial Intelligence 7:2 (1976), 163-198.

Sussman, G. J. and McDermott, D. "From PLANNER to Conniver, a

Genetic Approach." Proc. Fall Joint Computer Conf. 41

(1972), 1171.

van Emden
,

M. H. and Kowalski, R. A. "The Semantics of Predicate
Logic as a Programming Language." J. ACM 23:4 (1976).

van Melle, VI. "A Domain-Independent Production Rule System for
Consultation Programs." Proc. Sixth Internat. Joint Conf.
Artif . Intell . (1979).

Voelcker, H. B.
;
Requicha, A. A. G.; Hartquist, E. E.

;
Fisher, W.

B.
;

Metzger, J.; Tilove, R. B.
;
Birrell, n. K.; Hunt, W. A.;

Armstrong, G. T.
;

Check, T. F.
;
Moote, R., and McSweeney, J.

"The PADL-1.0/2 System for Defining and Displaying Solid
Objects." ACM Computer Graphics 12:3 (Aug. 1978), 257-263.

Voelcker, H. B. and Requicha, A. A. G. "Boundary Evaluation
Procedures for Objects Defined via Constructive Solid
Geometry." Tech. Memo. No. 26, Production Automation Project,
Univ. of Rochester (1980).

Weiss, S. M.
;
Kulikowski, C. A.; Amarel, S.

;
and Safir, A. "A

Model-Based Method for Computer-Aided Medical Decision-
Making." Artificial Intelligence 11:2 (1978), 145-172.

Weiss, S. M. and Kulikowski, C. A. "EXPERT: a System for
Developing Consultation Models." Proc. Sixth internat. Joint
Conf . Artif . Intell . (1979), 942-WT

Winston, P. H. Artificial Intelligence . Addison-Wesley

,

Reading, MA
, 1977.

Wysk, R. A. An Automated Process Planning and Selection Program:
APPAS. Ph.D. Thesis, Purdue Uni ver sityTT97T7

Initial State :
Goal State

1 3 5 11 1 2 3 4

2 4 10 9 5 6 7 8

hole 6 7 12 9 10 11 12

13 15 14 8 13 14 15 hole

Figure 2.1. The 15-puzzle.

1 3 5 11 1 3 5 11

2 4 10 9
UP^

hole 4 10 9

hole 6 7 12 DOWN 2 6 7 12

13 15 14 8 13 15 14 8

UP
1

DOWN
\RIGHT

LEFT^

1 3 5 11 1 3 5 11

2 4 10 9 2 4 10 9

13 6 7 12 6 hole 7 12

hole 15 14 8 13 15 14 8

DOWN

RIGHT

LEFT

LEFT RIGHT UP DOWN

UP

DOWN

RIGHT

LEFT^

Figure 2.2. A portion of the state space for the 15-puzzle.

Figure 2.3. Problem reduction on the 15-puzzle.

Original Problem

Figure 2.4. An AND/OR graph.

Initial State

Figure 2.5. State space and problem reduction graphs for a problem. The
problem is as follows: states are strings of characters, with the initial

state being the character S. The goal is to produce any string consisting
entirely of F’s, and the operators are:

1. replace any occurrence of S by AE;

2. replace any occurrence of A by BC;

3. replace any occurrence of A by DE;

A. replace any occurrence of D by F;

5. replace any occurrence of E by DF;

6. replace any occurrence of C by G.

(a) Not allowed, because (b) Allowed

the indicated line is

falseiy perceived as

going into the indicated

vertex

Figure 2.6. Not allowable and allowable viewpoints for a line drawing.
I

Figure 2.7. Huffman-Clowes labels on the line drawing of Figure 2.6.

Convex Intersections of surfaces are indicated by "t" labels; concave

intersections of surfaces are indicated by labels; and borders of

the object are indicated by arrows directed such that the object is to

the right of the arrow and the background is to the left.

< Y T Y
(a) An (b) aY
L vertex vertex

(C) aT
vertex

(d) An arrow

vertex

Figure 2.8. Physically possible types of vertices.

XA XX XX XX XX XX

Y Y Y
T
Y

Figure 2.9. Physically possible vertex labelings.

Figure 2.10. Successive steps in labeling the line drawing
Figure 2.6.

Figure 2.11. Labeling a line based on the labels of other lines going
into the same vertex.

Figure 2.12. An impossible object. There is no way to label line z such
that the vertices on both of its ends have legal combinations of labels.
This example is taken from Winston [1977], p. 59.

Figure 2.13. A vertex labeling operator, and the vertices to which
it is applicable.

Robot Hand

C

Blocks

/

] Table

Figure 2.14. An example world state for STRIPS. The example is taken

from Nilsson [1980], Chapter 7.

Not a Promising Next Page
Solution Path.

Figure 2.15. A search graph produced by SRTIPS

[1980], Chapter 7).

(taken from Nilsson

State Description

Ciear<B)

CleartO

On(C.A)

Ontablo(A)

Ontable<B)

1 Handempty

m

From Previous Page

i
Goal Stack

Handempty A Clear(C)

A On(C,y)

unstack(C.y)

Clear(B)

Clear(B) A Holdlng(C)

stack(C.B)

On(A,C)

On(C,B) A On(A,C)

With {A/y} the top subgoal
matches the current state
description. We can then
apply unstack(C,A). Now
the next two goals match
also, so we can apply
stack(C.B).

State Description

r*-i

M

CleaitC)

Clear(A)

On(C,B)

Handempty
Ontable(A)

Ontable<B)

Goal Stack

On(A,C)

OrHC.B) A On(A,C)

State Description Goal Stack

CleaitA) Clear(C) A Holding(A)

Clear<C) stack(A,C)

On(C,B) On<C,B) A On(A,C)
rh Ontable{A)

Ontable(B)

PI p Handempty

State Description Goal Stack

Cleat<A) Ontable(A) A Clear(A)

CleartC) A Handempty
On(C,B) plckup(A)

r^ Ontable(A) Clear(C) A Holdlng(A)

fcj OntabMB) stack(A,C)

|A| |b| Handempty On(C,B) A On(A,C)

Now we can apply plckup(A),

and then the next goal

will be matched, so we
can apply stack(A,C). Now
the last remaining goal on
the stack Is matched.

State Description

.

On(A,C)
^ On(C,B)

Ontable<B)

Clear(A)

Ontable(B)

Goal Stack

NIL

Figure 2.16. A continuation of Figure 2.15

All-Events

Figure 3.1. A simple sematic net [Nilsson 1980, p. 371]

Figure 3.2. An AND/OR graph corresponding to the PROLOG statements

A:-B^, B
2

, . . . , B^

A
. , C2,...) C. .

1

Procedure FINOVALUEOF (item GOAL)
begin item X; list L; rule R; premise_clause P;

if (X*-UNITYPATH{GOAL)) then return (X);

if LABDATA(GOAL) and DEFINITE_ANSWER(X-ASKUSER(GOAL)) then return(X);

L*-RULES_ ABOUT(GOAL):
L*-APPLY_METARULES(GOAL,L,0);
for R E L do

unless PREVIEW(R) = false do
begin “evaluate rule”

for P6 PREMISES__OF(R) do
begin “test-each-premise-clause”

If not TRACED(ATTRIBUTE_IN(P)) then FINDVALUEOF(ATTRIBUTE_IN(P));
if EVALUATION_OF(P) < .2 then next (R);

end “test-each-premise-clause”;

CONCLUDE(CONCLUSION_IN(R));
if VALUE_KNOWN_.WITH_CERTAINTY(GOAL) then

begin MARK_.AS_TRACED(GOAL); return (VALUEOF(GOAL)); end;
end “evaluate-rule”;

MARK_AS_TRACED(GOAL);
if VALUEOF(GOAL) = unknown and NOT_ALREADY_ASKEO(GOAL)

then return(ASKUSER(GOAL))
else return(VALUEOF(GOAL));

end;

Procedure APPLY_METARULES(item GOAL; list L; integer LEVEL);
begin list M; rule Q;
if (M-METARULES_ABOUT(GOAL,LEVEL -H))

then APPLY_METARULES(GOAL.M.LEVEL-t- 1);

for Oe M do USE_METARULE_TO_ORDER_LIST(Q,L):
return(L);

end;

Procedure CONCLUOE(action_clause CONCLUSION);
begin rule T; list I;

UPDATE_VALUE_OF(ATTRIBUTE_IN(CONCLUSION).VALUE_IN(CONCLUSION));
l-ANTECEDENTRULES_ASSOCIATED_WITH(CONCLUSION):
l-APPLY._METARULES(ATTRIBUTE_IN(CONCLUSION),l,0);
forT€ I do CONCLUDE(CONCLUSION_IN(T));
end;

Figure 4.1. The control structure for MYCIN [Davis et al. 1977, p. 43].

Figure 4.2. An AND/OR graph for MYCIN

Figure 4.3. Three-level description of a disease process [Weiss et al.

1978, p. 148]

.

Figure 4.4. Partial causal network for glaucoma. States with no antecedent
causes are indicated by asterisks. The circled numbers correspond to the
state labels n^ used in the text [Weiss et al. 1978, p. 149].

Blackboard

Key:

CD Program Modules ^ Data Flow

Databases Control Flow

Figure 4.5. Schematic of the Hearsay-II architecture [Erman et al.

1980, p. 222].

HMiMy*!! SpeMh-UndmlwKltny Syalem

L«¥elt Knowledge Soureea

Data Baaa
Inierfaca Samani

Phraaa

PredW ^StoB

‘I CoS^S^

Word-Sequanca
1 Word-Seq

Word^Se^tl

Word
Mow

arlly

Word-Ctl

Rpol

Syllabla
Ji

I
Pom

Segment
°

j

Sag
(i

Parameter

Figure 4.6. Levels and knowledge sources in Hearsay-II, as of September
1976. KS's are Indicated by vertical arcs with the circled ends indicating
output levels [Erman, 1980, p. 219].

Signal Acquisition, Parameter Extraction. Segmentation, and Labeling:

• SEG: Digitizes the signal, measures parameters, and produces a labeled segmentation.

Word Spotting:

• POM; Creates syllable-class hypotheses from segments.

• MOW: Creates word hypotheses from syllable classes.

• WORD-CTL: Controls the number of word hypotheses that MOW creates.

Phrase-Island Generation:

• WORD-SEQ; Creates word-sequence hypothe.ses that represent potential phrases from word hypotheses and

weak grammatical knowledge.

• WORD-SEQ-CTL; Controls the number of hypotheses that WORD-SEQ creates.

• PARSE: Attempts to parse a word sequence and. if successful, creates a phnise hypothesis from it.

Phrase Extending:

• PREDICT: Predicts all possible words that might syntactically precede or follow a given phra.«e.

• VERIFY: Rates the consistency between segment hypothe.ses and a contiguous word-phrase pair.

• CONC.\T: Creates a phrase hypothesis from a ventled contiguous word-phra.se pair.

Rating. Halting, and Interpretation:

• RPOL: Rates the credibility of each new or modified hypothesis, using information placed on the hypothesis

by other KSs.

• STOP; Decides to halt processing (detects a complete sentence with a sufficiently high rating, or notes the

system has exhausted its available re.-ources) and .selects the best phrase hypothesis or .set ot complementary

phra.se hypotheses as the oiiipiit.

• SKM.ANT; Generates an unambiguous iiiterpreialion for ihe information-retrieval system which the user has

queried.

Figure 4.7. Functional descriptions of a few of the Hearsay-II KS's

[Erman 1980, p. 219].

97

Figure 4.

1980, p.

Figure '

DENDRAL

Terminal

8. An AND/OR graph for an example DENDRAL problem [Nilsson,

44]

.

IC2H7I

H
I I

C=C
I

H

H-C-H
I

H

H-C-H
1C2H6|=C

H-C-H
I

H

H
I

H-C^H
IC2H5I-C-H

H-C-H
I

H

H

IC2H5I-C-IC2H5I

H

H
I

H-C-H

H H
• ' AH-C-C-C-H
>

I
>

H H

H-C-H
I

H

.9. Partial structures proposed by the "generate part of

for [Nilsson, 1980, p. 42].

Cholestasis

Stone Cancer Stricture

Bd-Cancer Ampu lary-

Cancer

Gallbladder-

Cancer

Av-Cancer Pancreas-Cancer

Head-of Body-Tall-of
Pancreas Pancreas

Figure 4.10. Conceptual structure of Cholestasis [Chandrasekaran et al.

1979]

.

Figure 5.1. A typical drilled hole in an object.

Part

(a) Correct

(b) Incorrect

Figure 5.2. Correct and incorrect orientations of a part relative to a

piece of stock.

NBS-114A (REV. 2 -80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 81-2466

2. Performins Organ. Report No.] 3. Publication Date

February 1982

4. TITLE AND SUBTITLE

Expert Computer Systems, and Their Applicability to Automated Manufacturing

5. AUTHOR(S)

Dr . Dana S . Nau

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE «. Type of Reports, Period Covered

WASHINGTON, D.C. 20234

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

10.

SUPPLEMENTARY NOTES

Q21 Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document Includes a significant
bibliography or literature survey, mention it here)

This paper contains two main parts; a tutorial on techniques used in expert systems,
and some recommendations for an automated process planning system for the Automated
Manufacturing Research Facility at the National Bureau of Standards (NBS)

.

The tutorial portion of the paper consists of Sections 2, 3, and 4. Sections 2 and

3 discuss AI problem solving and knowledge representation techniques. Section 4 des-
cribes ways in which these techniques have been used to build computer systems which
achieve a high level of performance on problems which normally require significant
human expertise for their solution.

Section 5 contains a summary of the activities required for process planning in the
Automated Manufacturing Research Facility (AMRF) at NBS, and recommendations for how to

accomplish these activities. Section 6 contains recommendations for how an expert
system could be designed to perform a process planning activity called process
selection.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

AMRF; Artificial intelligence; Automated manufacturing; Expert systems; Knowledge-based
systems; Knowledge engineering; Knowledge representation; Process planning; Problem

. sni VI no . ;

13. AVAILABILITY

Unlimited

1 1

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

[]3| Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

110

15. Price

$12,00

USCOMM-DC 6043-P80

